Material Classification (Iron and Steel Slag) Monitoring Report 2010

Australasian (iron and steel) Slag Association Inc.

Material Classification (Iron and Steel Slag) Monitoring Report 2010

Prepared by HBM Group Pty Ltd

ASA National Office Suite 2, Level 1, 336 Keira Street Wollongong NSW Australia 2500 T. 02 4225 8466 • F. 02 4228 1777 • W. www.asa-inc.org.au • E. info@asa-inc.org.au Postal Address PO Box 1194 Wollongong NSW 2500

Table of Contents

E	xecu	tive Summary	5
1	Intr	oduction	7
	1.1	Iron and Steel Slag Classification System	7
	1.2	Objective of Scope of Work	8
	1.3	Material Selection & Sample Identification	8
	1.4	Material Processes	8
	1.5	Who is Responsible for Classification/Exemption?	9
2	Sar	npling and Analysis Procedures	9
	2.1	Site Sampling Procedures	9
	2.2	Samples (n) collected	9
	2.3	Laboratory Procedures	. 10
	2.4	Quality Control / Quality Assurance Procedures	. 10
3	Ass	sessment and Classification Procedures	. 10
	3.1	The Classification Process	. 10
4	Со	mparison of Analytical Results with Environmental Guidelines	. 10
	4.1	Product Category Assessment Results	. 10
	4.2	Granulated Blast Furnace Slag Assessment	. 11
	4.3	Blast Furnace Slag Aggregate Assessment	. 12
	4.4	Blast Furnace Slag Fines Assessment	. 13
	4.5	Steel Furnace Slag Aggregates Assessment	. 14
	4.6	Steel Furnace Slag Fines Assessment	. 15
	4.7	Electric Arc Furnace Slag Aggregates Assessment	. 16
	4.8	Electric Arc Furnace Slag Fines Assessment	. 17
	4.9	Sinter Slag Fines Assessment	. 18
	4.10		
		Melter Slag Assessment	. 19
	4.11	Melter Slag Assessment KOBM Slag Assessment	
5		-	. 20
5		KOBM Slag Assessment	. 20 . 21
5	Dis	KOBM Slag Assessment	. 20 . 21 . 21
5	Dis 5.1	KOBM Slag Assessment cussion of Results Summary	. 20 . 21 . 21 . 21

	5.5	Steel Fu	Irnace Slag Aggregates	22
			urnace Slag Fines	
			Arc Furnace Slag Aggregates	
			Arc Furnace Slag Fines	
			lag Fines	
			Slag	
	5.11	KOBM	Slag	23
	5.12	Limitat	ions	23
6	Со	nclusion	IS	24
			ance with Acceptance Criteria	
7	R٩	ated Do	cuments	25
•	I CO			-0
A	ttach	ment 1	Slag co-product Manufacturing Process	26
A	ttach	ment 2	Nata Laboratory Reports	28

Glossary

Term	Definition
AS	Australian Standard
ASA	Australasian (iron & steel) Slag Association
Chain of Custody (COC)	Documentation which accompanies samples to reduce the potential for loss or erroneous labelling or analysis reporting
DECCW	Department of Environment, Climate Change and Water of New South Wales.
EQL	Estimated Quantitation Limit – the minimum concentration the laboratory can analyse.
ISO	International Standards Organisation
Leachate	The water solution containing the released substance.
mg/kg	Milligrams per kilogram or 1 x 10 ⁻⁶ (i.e. one in one-million)
mg/L	Milligrams per litre or 1 x 10 ⁻⁶ (i.e. one in one-million)
ug/l	Micrograms per litre or 1×10^{-9} if fluid is assumed to be density of 1mg/mL
ΝΑΤΑ	National Association of Testing Authorities
ng/g	Nanograms per gram or 1 x 10 ⁻⁹ (i.e. one in one-thousand-million)
QA / QC	Quality Assurance / Quality Control
TCLP	Toxicity Characteristic Leaching Procedure – a method of determining the release of a substance via exposure to water solution.
ТМ	Total Metals – a method of determining total elemental characterisation by acid digestion.
USEPA	United States Environment Protection Agency

Executive Summary

The Australasian (iron & steel) Slag Association (ASA) annually undertakes an Environmental Monitoring Program (EMP) to monitor and assess the iron and steel slags produced, processed and sold by its members.

Commencing in 2005, this annual EMP was established in response to recommendations from the "*Material Classification of Iron and Steel Slag By-product Waste Classification Investigation Report 2004*". Amongst its key recommendations was to establish an annual EMP to increase industry understanding about environmental performance of the iron and steel slag products generated, processed and sold by members.

The EMP methodology involves collecting iron and steel slag samples, where available, from member sites, analyses and report on total metal and selected leachable concentrations against, where established, jurisdictional government regulations. Samples are only subjected to a Toxicity Characteristic Leaching Procedure (TCLP) where required and assessed against specified acceptance criteria.

Since 2004 the referenced assessment methods have evolved through ongoing consultation with regulators. Initially the NSW Environmental Protection Authority's (EPA) *Environmental Guidelines*¹, were used. These guidelines classifying wastes as either 'hazardous', 'industrial, 'solid' or 'inert'. All previous reports have classified iron and steel slag (ISS) products as 'inert'.

This report is the Association's fourth (4th) EMP, the reference methods and guidelines have evolved slightly to reflect proposed 'general exemption' criteria and assessment conditions by the DECCW. Though still in draft these proposed "general exemption/s" guidelines are titles: *The steel furnace slag exemption, The electric arc furnace slag exemption* and *The blast furnace slag exemption* ('the *Exemption* guidelines')².

The following report summarises the results of the 2009 EMP report (EMP09). Consistent with past reports, all sources for iron and steel slag are compared against nominated thresholds, where provided, for each jurisdiction.

For the EMP09, the ASA tested a total of sixty three (63) ISS samples from member sites – BlueScope NSW, BIS Industrial SA, Multiserv VIC, Steelstone (Newcastle and Rooty Hill, NSW), Onesteel (Rooty Hill and Newcastle, NSW) and Steelserv based in New Zealand. ISS are co-products of various metallurgical processes, namely Iron Blast Furnace Slag (BFS), Steel Furnace Slag (SFS), Electric Arc Furnace Slag (EAFS), Sinter Slag Fines, Melter Slag and KOBM Slag.

Analysis of their results against the *Exemption* guidelines have confirmed the stable and consistent nature of these slag samples from member sites, and indicate each sample provided would comply with the exemption requirements.

¹ NSW EPA (1999). Environmental Guidelines: Assessment, Classification & Management of Liquid & Non-liquid Wastes. EPA 99/21. Sydney, NSW, Australia, Environment Protection Authority.

² Protection of the Environment Operations (Waste) Regulation 2005 – General Exemption Under Part 6, Clause 51 and 51A: Draft - The blast furnace slag exemption 2008; Draft – The steel furnace slag exemption 2008; Draft - The electric arc furnace slag exemption 2008

Figure 1 Distribution of Members

Member Companies Location 🔴

1 Introduction

Building on the capstone Research and Development Program conducted in 2004, that is the published report titled – *"Material Classification of Iron and Steel Slag By-product Waste Classification Investigation Report 2004"*, the Australasian (iron & steel) Slag Association Inc. (ASA) implemented one of the key recommendations arising from the report.

The recommendation specifically called for an ongoing monitoring program of iron and steel slag available throughout its membership.

8.1 Develop and implement and annual [Environmental] Monitoring Program

This 2009 Environmental Monitoring Program (EMP09) report represents the fourth (4th) assessment conducted by ASA inline with the above recommendation for ongoing monitoring of iron and steel slag's (ISS) generated, processed and sold.

1.1 Iron and Steel Slag Classification System

In previous studies, and EMP reports, the NSW Environmental Protection Authority's (EPA) *Environmental Guidelines*³ have been a useful aid in established standardise methodology for distinguishing concentrations of substances and their mobility behaviour, and in the determination process for classification of a waste. These *Environmental Guidelines*, whilst not exemptions per se, that is, classifying materials which meet these requirements from the waste reporting requirements, have however provided for sound and consistent basis for characterisation under extreme assessment conditions.

Amendments to the *Protection of the Environment Operations Act 1997* and the *Protection of the Environment Operations (Waste) Regulation 2005* took effect on 28 April 2008. These changes, made under the *Protection of the Environment Operations Amendment (Scheduled Activities and Waste) Regulation 2008*, follow consultation in 2007 with industry, organisations and the broader community. Amendments of particular interest to our industry are summarised below:

- Fewer and simpler licensing categories for waste
- A streamlined waste classification system
- New resource recovery licensing categories and resource recovery exemptions
- *Exemption* guidelines providing the process for determination of the waste classification, including analytical tables, which indicate the acceptable concentrations of contaminants in the waste.

During the course of 2008/9, the DECCW in consultation with the ASA undertook to develop exemptions for various ISS. Resulting from the above changes, aspects of this report have been amended to reflect proposed *Exemption*⁴ requirements for each from of iron and steel slag.

³ NSW EPA (1999). Environmental Guidelines: Assessment, Classification & Management of Liquid & Non-liquid Wastes. EPA 99/21. Sydney, NSW, Australia, Environment Protection Authority.

⁴ Protection of the Environment Operations (Waste) Regulation 2005 – General Exemption Under Part 6, Clause 51 and 51A: Draft - The blast furnace slag exemption 2008; Draft – The steel furnace slag exemption 2008; Draft - The electric arc furnace slag exemption 2008

1.2 Objective of Scope of Work

The object of the monitoring system is to collect, analyse, assess and report on the chemical concentration and leachable potential assessed against the *Exemption* requirements for Steel Furnace Slag (SFS), Electric Arc Furnace Slag (EAFS), Blast Furnace Slag (BFS) Melter Slag (MS) and KOBM Slag.

The aim of the EMP is **NOT** to replace or undertake by proxy generator, processor and or consumer responsibilities under the respective legislation and or specific environmental licence requirements, but to have a nationally maintained central database on the chemical concentration and leachable potential of ISS, which supplements and can be combined with member data on a consistent basis.

Accordingly, the data from these reports should not be relied upon to replace member responsibilities as legislated.

A secondary aim for the EMP is to reassess the ongoing stable and consistent nature of these respective metallurgical processes and resulting products.

The chemical characteristics of several types of metallurgical slags will be examined, these being: Iron Blast Furnace Slag (BFS), Steel Furnace Slag (SFS), Electric Arc Furnace Slag (EAFS), Melter Slag (MS) and KOBM Slag (KOBMS).

1.3 Material Selection & Sample Identification

The following table sets out the sample identification coding system used to identify each specific iron and steel slag products into their various categories.

Product Description	Sample Identification range	Number of samples received
Granulated Blast Furnace Slag	101 – 103	3
Blast Furnace Slag – Air cooled aggregates	201 – 206	6
Blast Furnace Slag – Air cooled fines	304 – 306	3
Steel Furnace Slag – Air cooled aggregates	401 – 406	6
Steel Furnace Slag – Air cooled fines	501 – 506	6
Electric Arc Furnace Slag – Air cooled aggregates	601 – 618	15
Electric Arc Furnace Slag – Air cooled fines	701 – 715	15
Sinter Slag Fines	801 – 803	3
Melter Slag	901 – 903	3
KOBM Slag	904 – 906	3

1.4 Material Processes

Each metallurgical slag type can be processed into various forms. For example molten slag material can be poured into cooling pits and allowed to solidify like natural rock. This solid rock material when cooled can then be processed and crushed into aggregates of various sizes like any natural quarried product. Some processes such as the manufacture of granulated iron blast furnace slag (GBFS) requires cooling the molten material instantaneously with high volume water sprays

and will manifest different physical characteristics when compared with air-cooled slag.

Attachment 1 provides an explanation for each of the slag manufacturing processes involved.

1.5 Who is Responsible for Classification/Exemption?

Generally state Environment Protection Authorities (EPA's) do not classify wastes themselves. This task of determining classification is essentially the responsibility of the Generators'. The generator determines waste classifications according to state requirements.

For example in New South Wales, it's proposed that generators assess using the *Exemption* requirements. Once the material is deemed to meet these requirements, the material is exempt for: waste reporting, monitoring and associated levies under section 88 of the $PoEA^5$.

This responsibility to assess the material places an additional burden for the generator to both demonstrate the reliability, and to show due diligence in, monitoring co-product stream quality.

To assess the waste, the *Exemption* describes a process which:

- Qualitatively describes the sampling techniques and numbers of samples;
- Establishes chemical thresholds
- Methods for analysing contaminant concentration;
- Assesses concentrations Total and Available (leachable) forms.

As noted above, this report is not intended to replace generators' responsibility to determine the classification or exemption status of their respective co-products. However, should generators choose to rely on data within this report, they should satisfy themselves with regards to the accuracy, limitations (samples assessed - n) of the study.

2 Sampling and Analysis Procedures

2.1 Site Sampling Procedures

Slag co-product samples were taken in accordance with the following standards:

- AS 1199 Sampling procedures and tables for inspection by attributes
- AS 1399 Guide to AS 1199
- AS 1141.3.1 Methods for Sampling and Testing Aggregates 1996 (Method 3.1- Sampling Aggregates: Section 6.9 - Sampling from Stockpiles)

A Chain of Custody (COC) form was completed and despatched with the samples.

2.2 Samples (n) collected

The association centrally coordinated the collection of sixty three (63) samples from member sites throughout Australia and New Zealand. The geographic distribution of Association members is illustrated in Figure 1 above.

⁵ Protection of the Environment Operations Act 1997

These samples, along with the COC forms, were delivered to LabMark Pty Ltd, a NATA certified laboratory, for analysis.

2.3 Laboratory Procedures

Laboratory procedures for analysis of Total Metals (TM) and Toxicity Characteristic Leaching Procedure (TCLP), as required, were conducted by LabMark Pty Ltd, a NATA certified laboratory.

2.4 Quality Control / Quality Assurance Procedures

The full breakdown of the analytical results for the QA/QC for these analyses are included within the NATA laboratory reports. All were satisfactory.

3 Assessment and Classification Procedures

3.1 The Classification Process

The assessment and classification process was in accordance with the *Exemption* requirements for collected ISS

4 Comparison of Analytical Results with Environmental Guidelines

4.1 Product Category Assessment Results

Using the *Exemption* requirements, each of the samples was assessed with results shown arithmetic means reported in the following tables.

4.2 Granulated Blast Furnace Slag Assessment

		Gi	ranulated Blas	st Furnace Slag			
Element			NSW ¹				
	Mean	Mean		Table 2 v	alues		
	TCLP	TM	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)	
	mg/L	mg/kg		mg/kg	mg/kg	mg/L	
As		0.5	5	N/A	10	N/A	
В		46.7	N/A	N/A	N/A	N/A	
Ba		316.7	N/A	N/A	N/A	N/A	
Be		7.0	10	N/A	20	N/A	
Cd		0.03	0.5	0.5	1	N/A	
Со		2.5	N/A	N/A	N/A	N/A	
Cr		5.3	50	N/A	100	N/A	
Cu		2.3	10	10	20	N/A	
Hg		0.1	0.5	N/A	1	N/A	
Мо		2.5	5	5	10	N/A	
Ni		7.3	10	N/A	20	N/A	
Pb		2.5	10	N/A	20	N/A	
Sb		2.5	N/A	N/A	N/A	N/A	
Se		0.5	2	N/A	5	N/A	
Sn		5.0	N/A	N/A	N/A	N/A	
Zn		6.3	25	25	50	N/A	
Mn		1593.3	N/A	N/A	N/A	N/A	
Al		50866.7	N/A	N/A	N/A	N/A	

Legend Exceeding threshold Near threshold

Sample Identification 101 to 103 (n=3) As can be seen from this assessment the co-product **would be considered exempt**.

		Blast Fu	rnace Slag - A	Air cooled aggre	gates				
Element	NSW ¹								
Mean Mean				Table 2 v	alues				
	TCLP	ТМ	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)			
	mg/L	mg/kg		mg/kg	mg/kg	mg/L			
As		0.5	5	N/A	10	N/A			
В		33.3	N/A	N/A	N/A	N/A			
Ba		193.3	N/A	N/A	N/A	N/A			
Be		6.7	10	N/A	20	N/A			
Cd		0.03	0.5	0.5	1	N/A			
Со		2.5	N/A	N/A	N/A	N/A			
Cr		7.3	50	N/A	100	N/A			
Cu		1.0	10	10	20	N/A			
Hg		0.05	0.5	N/A	1	N/A			
Мо		2.5	5	5	10	N/A			
Ni		10.8	10	N/A	20	N/A			
Pb		2.5	10	N/A	20	N/A			
Sb		2.5	N/A	N/A	N/A	N/A			
Se		0.5	2	N/A	5	N/A			
Sn		5.0	N/A	N/A	N/A	N/A			
Zn		2.5	25	25	50	N/A			
Mn		1273	N/A	N/A	N/A	N/A			
Al		39183.3	N/A	N/A	N/A	N/A			

Blast Furnace Slag Aggregate Assessment 4.3

Legend Exceeding threshold Near threshold

Sample Identification 201 to 206 (n=6)

4.4 Blast Furnace Slag Fines Assessment

Blast Furnace Slag - Air cooled fines NSW¹ Element Mean Mean Table 2 values TCLP ТΜ TM(Chara) TCLP(Max) TM(Routine) TM(Max) mg/kg mg/kg mg/L mg/kg mg/L 0.5 5 N/A 10 N/A As N/A В 70.0 N/A N/A N/A N/A N/A Ва 273.3 N/A N/A Be 9.0 10 N/A 20 N/A Cd 0.03 0.5 0.5 N/A 1 Со 2.5 N/A N/A N/A N/A 4.7 50 N/A Cr N/A 100 Cu 1.0 10 N/A 10 20 0.5 N/A N/A Hg 0.05 1 2.5 10 N/A Мо 5 5 Ni 10.3 10 N/A 20 N/A Pb 10 20 N/A 2.5 N/A Sb 2.5 N/A N/A N/A N/A Se 0.5 2 N/A 5 N/A Sn 5.0 N/A N/A N/A N/A Zn 2.5 25 25 50 N/A 1797 N/A Mn N/A N/A N/A N/A AI 50267 N/A N/A N/A

Legend Exceeding threshold Near threshold

Sample Identification 304 to 306 (n=3)

4.5 Steel Furnace Slag Aggregates Assessment

Steel Furnace Slag - Air cooled aggregates

Element	NSW ¹							
	Mean	Mean	Table 2 values					
	TCLP	ТМ	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)		
	mg/L	mg/kg		mg/kg	mg/kg	mg/L		
As		0.750	5	N/A	N/A	N/A		
В		41.7	N/A	N/A	N/A	N/A		
Ва		33.3	N/A	N/A	N/A	N/A		
Be		2.5	10	N/A	20	N/A		
Cd		0.13	0.5	0.5	1	N/A		
Со		2.5	N/A	N/A	N/A	N/A		
Cr	0.025	540.2	1000	N/A	2000	0.2		
Cu	0.025	10.3	20	N/A	40	0.2		
Hg		0.05	0.5	N/A	1	N/A		
Мо	0.005	9.1	50	50	100	0.1		
Ni		15.5	30	30	60	N/A		
Pb		2.5	10	10	20	N/A		
Sb		2.5	N/A	N/A	N/A	N/A		
Se		0.5	2	N/A	5	N/A		
Sn		5.0	N/A	N/A	N/A	N/A		
Zn	0.029	20.5	50	50	100	1		
Mn		18633	N/A	N/A	N/A	N/A		
Al		14300	N/A	N/A	N/A	N/A		

Legend Exceeding threshold Near threshold

Sample Identification 401 to 406 (n=6)

4.6 Steel Furnace Slag Fines Assessment

		Ste	el Furnace Sla	g - Air cooled fi			
Element			NSW	NSW ¹			
Mean Mean			Table 2 values				
	TCLP	ТМ	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)	
	mg/L	mg/kg		mg/kg	mg/kg	mg/L	
As		0.6	5	N/A	N/A	N/A	
В		43.3	N/A	N/A	N/A	N/A	
Ba		29.2	N/A	N/A	N/A	N/A	
Be		2.5	10	N/A	20	N/A	
Cd		0.14	0.5	0.5	1	N/A	
Co		3.3	N/A	N/A	N/A	N/A	
Cr	0.025	508.5	1000	N/A	2000	0.2	
Cu	0.025	14.3	20	N/A	40	0.2	
Hg		0.05	0.5	N/A	1	N/A	
Мо		3.5	50	50	100	N/A	
Ni	0.330	19.5	30	30	60	0.1	
Pb		2.5	10	10	20	N/A	
Sb		2.5	N/A	N/A	N/A	N/A	
Se		0.5	2	N/A	5	N/A	
Sn		5.0	N/A	N/A	N/A	N/A	
Zn	0.025	49.0	50	50	100	1	
Mn		15617	N/A	N/A	N/A	N/A	
Al		78600	N/A	N/A	N/A	N/A	

... - · -••

> Legend Exceeding threshold Near threshold

Sample Identification 501 to 506 (n=6) As can be seen from this assessment the co-product **would be considered exempt.**

4.7 Electric Arc Furnace Slag Aggregates Assessment

Electric Arc Furnace Slag - Air cooled aggregates

Element	NSW ¹						
Mean Mean			Table 2 values				
	TCLP	TM	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)	
	mg/L	mg/kg		mg/kg	mg/kg	mg/L	
As		1.3	5	N/A	10	N/A	
В		73.3	N/A	N/A	N/A	N/A	
Ва		560.7	N/A	N/A	N/A	N/A	
Be		2.5	10	N/A	20	N/A	
Cd		0.2	1	1	2	N/A	
Со		2.5	N/A	N/A	N/A	N/A	
Cr	0.337	4046.7	10,000	N/A	20000	0.2	
Cu	0.027	94.9	100	100	200	0.2	
Hg		0.05	1	N/A	2	N/A	
Мо	0.037	15.2	35	35	70	0.2	
Ni	0.147	19.8	50	50	100	0.1	
Pb		3.8	25	25	50	N/A	
Sb		2.5	N/A	N/A	N/A	N/A	
Se		0.5	2	N/A	5	N/A	
Sn		5.7	N/A	N/A	N/A	N/A	
Zn	0.575	209.2	350	350	700	1	
Mn		27260	N/A	N/A	N/A	N/A	
AI		18960	N/A	N/A	N/A	N/A	

Legend Exceeding threshold Near threshold

Sample Identification 601 to 618 (n=15)

		Electric	Arc Furnace	Slag - Air cooled				
Element			NSW ¹					
	Mean Mean		Table 2 values					
	TCLP	TM	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)		
	mg/L	mg/kg		mg/kg	mg/kg	mg/L		
As		1.6	5	N/A	10	N/A		
В		58.7	N/A	N/A	N/A	N/A		
Ba		578.0	N/A	N/A	N/A	N/A		
Be		2.5	5	N/A	10	N/A		
Cd		0.4	0.5	0.5	1	N/A		
Со		3.1	N/A	N/A	N/A	N/A		
Cr	0.211	4123.3	10,000	N/A	20000	0.2		
Cu	0.027	114.5	100	100	200	0.2		
Hg		0.05	0.5	N/A	1	N/A		
Mo	0.021	16.5	35	35	70	0.2		
Ni	0.143	29.8	50	50	100	0.1		
Pb		6.1	25	25	50	N/A		
Sb		2.5	N/A	N/A	N/A	N/A		
Se		0.8	2	N/A	5	N/A		
Sn		7.0	N/A	N/A	N/A	N/A		
Zn	0.512	322.1	350	350	700	1		
Mn		27787	N/A	N/A	N/A	N/A		
Al		20040	N/A	N/A	N/A	N/A		

Electric Arc Furnace Slag Fines Assessment 4.8

Electric Arc Eurnace Slag - Air cooled fines

Legend Exceeding threshold Near threshold

Sample Identification 701 to 715 (n=15)

4.9 Sinter Slag Fines Assessment

	-	S	teel Furnace S	lag - Sinter Fine	s				
Element	NSW ¹								
	Mean	Mean		Table 2 values					
	TCLP	ТМ	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)			
	mg/L	mg/kg		mg/kg	mg/kg	mg/L			
As		1.2	5	N/A	N/A	N/A			
В		33.3	N/A	N/A	N/A	N/A			
Ва		70.0	N/A	N/A	N/A	N/A			
Be		2.5	10	N/A	20	N/A			
Cd		0.43	0.5	0.5	1	N/A			
Со		6.7	N/A	N/A	N/A	N/A			
Cr	0.025	540.7	1000	N/A	2000	0.2			
Cu	0.025	22.3	20	N/A	40	0.2			
Hg		0.05	0.5	N/A	1	N/A			
Мо		9.0	50	50	100	N/A			
Ni	0.213	49.7	30	30	60	0.1			
Pb	0.005	10.7	10	10	20	N/A			
Sb		2.5	N/A	N/A	N/A	N/A			
Se		0.5	2	N/A	5	N/A			
Sn		6.7	N/A	N/A	N/A	N/A			
Zn	0.025	113.0	50	50	100	1			
Mn		20600	N/A	N/A	N/A	N/A			
Al		11733	N/A	N/A	N/A	N/A			

Legend Exceeding threshold Near threshold

Sample Identification 801 to 803 (n=3)

4.10 Melter Slag Assessment

			Μ	elter					
Element	NSW ¹								
	Mean	Mean		Table 2 v	alues				
	TCLP	ТМ	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)			
	mg/L	mg/kg		mg/kg	mg/kg	mg/L			
As		0.5	5	N/A	10	N/A			
В		220.0	N/A	N/A	N/A	N/A			
Ва		110.0	N/A	N/A	N/A	N/A			
Be		2.5	10	N/A	20	N/A			
Cd		0.1	0.5	0.5	1	N/A			
Co		2.5	N/A	N/A	N/A	N/A			
Cr		26.7	50	N/A	100	N/A			
Cu	0.025	13.0	10	10	20	N/A			
Hg		0.05	0.5	N/A	1	N/A			
Мо		2.5	5	5	10	N/A			
Ni		2.0	10	N/A	20	N/A			
Pb		2.5	10	N/A	20	N/A			
Sb		2.5	N/A	N/A	N/A	N/A			
Se		0.5	2	N/A	5	N/A			
Sn		5.0	N/A	N/A	N/A	N/A			
Zn	0.025	28.3	25	25	50	N/A			
Mn		2027	N/A	N/A	N/A	N/A			
Al		8667	N/A	N/A	N/A	N/A			

Legend Exceeding threshold Near threshold

Sample Identification 901 to 903 (n=3) As can be seen from this assessment the co-product **would be considered exempt.**

4.11 KOBM Slag Assessment

			КС	DBM									
Element				NSW	/ ¹								
	Mean	Mean		Table 2 values									
	TCLP	ТМ	TM(Chara)	TM(Routine)	TM(Max)	TCLP(Max)	L						
	mg/L	mg/kg		mg/kg	mg/kg	mg/L	E						
As		0.5	5	N/A	10	N/A	1						
В		120.0	N/A	N/A	N/A	N/A							
Ва		53.3	N/A	N/A	N/A	N/A							
Be		2.5	5	N/A	10	N/A							
Cd		0.1	0.5	0.5	1	N/A							
Со		8.3	N/A	N/A	N/A	N/A							
Cr	0.025	997.7	10,000	N/A	20000	0.2							
Cu	0.033	9.0	100	100	200	0.2							
Hg		0.05	0.5	N/A	1	N/A							
Мо	0.005	2.5	35	35	70	0.2							
Ni	0.257	26.0	50	50	100	0.1							
Pb		2.5	25	25	50	N/A							
Sb		2.5	N/A	N/A	N/A	N/A							
Se		0.5	2	N/A	5	N/A							
Sn		5.0	N/A	N/A	N/A	N/A							
Zn	0.025	14.8	350	350	700	1							
Mn		11157	N/A	N/A	N/A	N/A							
Al		6600	N/A	N/A	N/A	N/A							

Legend Exceeding threshold Near threshold

Sample Identification 904 to 906 (n=3)

5 Discussion of Results

5.1 Summary

From the sixty three (63) ISS samples analysed for their TM concentrations from eight separate process locations throughout Australasia, four (4) ISS types returned results with TM concentrations slightly above for the nominated thresholds specified under Column 2 of Table 2 of the *Exemption* for the elements – Lead, Zinc and Copper.

- Sinter Slag Fines (Pb, Zn)
- EAFS (Cu)

Twenty seven (27) samples were submitted for further analysed using the TCLP method. The majority of results were below the maximum concentration, with three (3) ISS returning results slightly above the nominated thresholds specified under Column 4 of the Table 2 of the *Exemption*.

- Sinter Slag Fines (Ni)
- EAFS (Cr, Ni)
- KOBM Slag (Ni)

The results are discussed in more detail below for each of the slag types.

5.2 Granulated Blast Furnace Slag

As demonstrated by the results in Table 4.2, each of the elements assessed show TM concentrations well below the maximum values specified under Table 2 of the *Exemption*⁶ requirements.

Based on this assessment, the co-product would be considered exempt.

5.3 Blast Furnace Slag Aggregates

As demonstrated by the results in Table 4.3, each of the elements assessed show TM concentrations well below the maximum values specified under Table 2 of the *Exemption*⁷ requirements.

Based on this assessment, the co-product would be considered exempt.

5.4 Blast Furnace Slag Fines

As demonstrated by the results in Table 4.4, each of the elements assessed show TM concentrations well below the maximum values specified under Table 2 of the *Exemption*^{δ} requirements.

Based on this assessment, the co-product would be considered exempt.

⁶ Protection of the Environment Operations (Waste) Regulation 2005 – General Exemption Under Part 6, Clause 51 and 51A: Draft - The blast furnace slag exemption 2008; Draft – The steel furnace slag exemption 2008; Draft - The electric arc furnace slag exemption 2008

⁷ ibid

⁸ ibid

5.5 Steel Furnace Slag Aggregates

As demonstrated by the results in Table 4.5, each of the elements assessed show TM concentrations well below the maximum values specified under Table 2 of the *Exemption*⁹ requirements.

As specified under Table 2 of the *Exemption*, TCLP assessment was required for four (4) elements, namely Chromium, Copper, Molybdenum and Zinc. As demonstrated by the results in Table 4.5, all results are well below the maximum concentration values under Column 4 of the Table.

Based on this assessment, the co-product would be considered exempt.

5.6 Steel Furnace Slag Fines

As demonstrated by the results in Table 4.6, each of the elements assessed show TM concentrations well below the maximum values specified under Table 2 of the *Exemption*¹⁰ requirements.

As specified under Table 2 of the *Exemption*, TCLP testing was required for four (4) elements, namely Chromium, Copper, Nickel and Zinc. As demonstrated by the results in Table 4.6, all results are well below the maximum concentration values under Column 4 of the Table 2, with exception for Nickel being slightly above at 0.33mg/L.

Based on this assessment, the co-product would be considered exempt.

5.7 Electric Arc Furnace Slag Aggregates

As demonstrated by the results in Table 4.7, each of the elements assessed show TM concentrations well below the maximum values specified under Table 2 of the *Exemption*¹¹ requirements.

As specified under Table 2 of the *Exemption*, TCLP testing was required for five (5) elements, namely Chromium, Copper, Molybdenum Nickel and Zinc. As demonstrated by the results in Table 4.7, the majority of results are well below the maximum concentration values under Column 4 of the Table, in particular Copper which was approximately 8 times below threshold of 0.2 mg/L at <0.027 mg/L, which is below the detection limits. Both Chromium and Nickel were slight above at 0.337 mg/L and 0.147mg/L respectively.

Based on this assessment, the co-product *would be considered exempt*.

5.8 Electric Arc Furnace Slag Fines

As demonstrated by the results in Table 4.8, each of the elements assessed show TM concentrations well below the maximum values specified under Table 2 of the *Exemption*¹² requirements.

As specified under Table 2 of the *Exemption*, TCLP testing was required for five (5) elements, namely Chromium, Copper, Molybdenum Nickel and Zinc. As demonstrated by the results in table 4.8, the majority of results are well below the maximum concentration values under Column 4 of the Table, in particular Copper which was approximately 8 times below threshold of 0.2 mg/L at <0.027 mg/L, well

11 ibid

12 ibid

⁹ ibid

¹⁰ ibid

below the detection limits. Both Chromium and Nickel were slightly above at 0.211 mg/L and 0.143 mg/L respectively.

Based on this assessment, the co-product *would be considered exempt*.

5.9 Sinter Slag Fines

As demonstrated by the results in Table 4.9, two (2) elements, Lead and Zinc, reported above at 10.7 mg/kg and 113 mg/kg for the TM characterisation values of 10 mg/kg and 50 mg/kg respectively under Column 2 of the Table 2 the *Exemption*.

As specified under Table 2 of the *Exemption*, TCLP testing was required for five (5) elements, namely Chromium, Copper, Nickel, Lead and Zinc. As demonstrated by the results in Table 4.9, the majority of results are well below the maximum concentration value under Column 4 of the Table. Nickel was slightly above the nominated threshold.

Based on this assessment, the co-product *would NOT be considered exempt due to TM results for Zinc.*

5.10 Melter Slag

As demonstrated by the results in Table 4.10, two (2) elements, Copper and Zinc reported slightly above at 13.0 mg/kg and 28.3 mg/kg respectively for the TM characterisation value of 10 mg/kg and 25 mg/kg respectively under Column 2 of Table 2 of the *Exemption*.

As can be seen from Table 2 of the *Exemption*, TCLP testing is not required for any of the elements, however samples submitted for analysis against Copper and Zinc were well below nominated thresholds.

It is noteworthy that Melter Slag is co-product New Zealand Steel and not currently exported to and sold in Australia.

Based on this assessment, the co-product *would be considered exempt*.

5.11 KOBM Slag

As demonstrated by the results in Table 4.11, each of the elements assessed show TM concentrations well below the maximum values specified under Table 2 of the *Exemption* requirements.

As specified under Table 2 of the *Exemption*, TCLP testing was required for five (5) elements, namely Chromium, Copper, Molybdenum, Nickel and Zinc. As demonstrated by the results in Table 4.11, all results were below the maximum concentration value under Column 4 of the Table. Nickel was slightly above the nominated threshold.

Based on this assessment, the co-product would be considered exempt.

5.12 Limitations

This report has been produced by assessing the samples as received, analysed and assessed against the *Exemption* requirements set out in Table 2 of the exemption.

The number and method of samples taken for each co-product was **NOT** consistent with the requirements of Table 3 of the *Exemption*. These results could be considered appropriate where:

- For a screening evaluation of the product range to determine the degree of compliance with the accepted standards;
- When coupled with previous investigations, n = Table 3 requirements, and;

Material Classification (Iron and Steel Slag) Monitoring Report 2010

• To investigate the consistency of the product.

From the sixty three (63) iron and steel slag samples collected from across Australasia it can be argued and demonstrated in this and previous reports the overall product quality, consistent nature and low coefficient of variation when assessed in conjunction with the previous studies and reports published. For example

- Ecotoxicity & Chemical Characterisation of Experimentally Generated Leachate from Unbound Rock Blast Furnace Slag – 1994
- Ecotoxicity & Chemical Characterisation of Experimentally Generated Leachate from Unbound Basic Oxygen Steel Slag 1996
- Ecotoxicity & Chemical Characterisation of Experimentally Generated Leachate from Unbound Electric Arc Furnace Steel Slag – 1997
- Material Classification of Iron and Steel Slag Co-product Waste Classification Investigation Report 2004 by Moeyan Management
- Material Classification (Iron and Steel Slag) Monitoring Report 2006

Despite some sample numbers for selected individual products being low in a statistical significance (n<30), we would argue that the consistency exhibited so far will, coupled with ongoing investigations, only support the findings of this EMP09 report.

6 Conclusions

6.1 Compliance with Acceptance Criteria

Based on the acceptance criteria established in the *Exemptions*, each of the following products are assessed in this report as follows;

- Granulated Blast Furnace Slag (*Exempt*)
- Blast Furnace Slag Air-cooled aggregates (Exempt)
- Blast Furnace Slag Air-cooled fines (Exempt)
- Steel Furnace Slag Air-cooled aggregates (Exempt)
- Steel Furnace Slag Air-cooled fines (*Exempt*)
- Electric Arc Furnace Slag Air-cooled aggregates (Exempt)
- Electric Arc Furnace Slag Air-cooled fines (Exempt)
- Sinter Slag Fines (Not Exempt)
- Melter Slag (Exempt)
- KOBM Slag (Exempt)

- 7 Related Documents
 - 1. Golder Associates, Ecotoxicity & Chemical Characterisation of Experimentally Generated Leachate from Unbound Rock Blast Furnace Slag, May 1993, 92620109(A).
 - 2. Golder Associates, Ecotoxicity & Chemical Characterisation of Experimentally Generated Leachate from Unbound Basic Oxygen Steel Slag, April 1996, 95623062.1.
 - 3. Golder Associates, Ecotoxicity & Chemical Characterisation of Experimentally Generated Leachate from Unbound Electric Arc Furnace Steel Slag, January 1997, 96623018.P.
 - 4. Moeyan Management, Material Classification of Iron and Steel Slag Byproduct Waste Classification Investigation Report 2004, 2004.

Attachment 1 Slag co-product Manufacturing Process

Blast Furnace Slag - Air Cooled Slag

The first step in the production of steel is the manufacturing of iron. This process begins by combining Iron ore (a mixture of iron oxides, silica and alumina) with a fuel consisting of coke, natural gas, oxygen and pulverised coal, and limestone – which serves as a fluxing agent in a blast furnace. The furnace consists of a large vertical chamber through which high volumes of hot air are blasted.

The liquid blast furnace slag flows into pits where it is predominantly air-cooled and sprayed with a small quantity of water. The cooled slag is then transported to a crushing and screening plant where it is further processed into various products including aggregates.

Air-cooled slag is produced when molten blast furnace slag is placed into a slag pit. The slag is then permitted to cool for a period of time whilst water is sprayed over the slag for the primary purpose of increasing the rate of solidification. The resulting solidified slag is referred to as "rock slag" or "air-cooled slag".

Granulated Blast Furnace Slag

Granulated slag is produced when molten blast furnace slag is introduced to a highpressure water stream. The effect of this process is to blast the slag stream apart, making small globules of slag that are almost instantaneously solidified. The slag created from this process is typically smaller then 6 mm. On examination, the macro components of granulated blast furnace slag are very consistent.

Both air-cooled and granulated slags are reclaimed by loader, transported by truck to the BlueScope Steel Recycling area where it is stockpiled in appropriate areas.

Steel Furnace BOS (Basic Oxygen System process) Slag

In the BOS process, molten iron, steel scrap and lime are placed in an open-top vessel. High pressure oxygen is blown into the vessel and a violent chemical reaction takes place. Upon completion of the reaction, the steel is drained into one ladle and the slag is poured into another. The molten steel furnace slag is then poured into a slag put where it is allowed to cool.

The steel furnace slag is reclaimed by loader, transported by truck to the BlueScope Steel recycling area where it is reprocessed and stockpiled in appropriate areas for despatch.

BlueScope Steel produces steel furnace slag as a co-product of the steel making process, which is very consistent.

Electric Arc Furnace Slag

In the EAF process, steel scrap and fluxes are added to a refractory lined cupshaped vessel. This vessel has a lid through which carbon electrodes are passed. An arc is induced between the scrap and electrodes and the resultant heat generated melts scrap and fluxes which react similarly to the BOS process. Steel and slag are also separated similarly.

Melter Slag

Iron is mined using conventional earthmoving equipment before being separated magnetically, by creating a slurry and running it over magnetic drums. This is followed by gravimetric separation through a series of cones and spiral separators, where the heavier iron-bearing materials gravitate towards the centre, while residual

clays and silts gravitate outwards. The slurry is then pumped 18 kilometres to the steel mill through an underground pipeline, where it is finally dewatered and stockpiled.

To convert the iron, a direct reduction process is used, adding coal and limestone to the irons before pre-heating them in four multi-hearth furnaces. This drives off the volatile constituents of the coal. The material then enters one of four rotary kilns where the direct reduction takes place over a period of eight hours.

The directly reduced product is then melted in one of two large electric melters. It is from this stage of the process that SteelServ Ltd obtains about 250,000 tonnes per annum of "melter" slag. The chemistry of New Zealand's melter slag differs from other variants of slag. This product consists of a high percentage of titanium and quantities of magnesium oxide and alumina typically higher than the industry norm. In contrast, the material has a characteristically low amount of silica, calcium oxide and sulphur.

KOBM Slag

New Zealand Steel uses a KOBM Oxygen Steel Converter vessel. The vessel is charged with the molten iron from the melters and a small proportion of scrap before refining begins using a top lance and bottom blown tuyeres to produce. The remaining steel making operation follows conventional practices, apart from the chemistry of the slag, which again differs from international equivalents due to irons and source.

KOBM slag is high in fines and cannot be used as an aggregate for road making or surfacings. KOBM can be used, however, as a lime substitute in stabilising clay subbases, as an additive to cement manufacture and as a soil conditioner for horticultural farming.

Attachment 2 Nata Laboratory Reports

Accredited for compliance with ISO/IEC 17025. The Accretine to compute with more results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the APIAC mutual recognition arrangement for the Austantian automation and a samados in ATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

AOIS AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No. N0356

Quarantine Approved Premises criteria 5.1 for quarantine Quarantine Approved Premises criteria 5.1 for quarantine containment level 1 (QCI) facilities. Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

E045449 Laboratory Report No: Australasian (Iron & Steel) Slag Assoc. **Client Name:** MCDS/09 **Client Reference:** Mona Forghani **Contact Name: Chain of Custody No:** na OTHER Sample Matrix:

Cover Page 1 of 3 plus Sample Results

Date Received: 04/11/2009 Date Reported: 11/11/2009

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY CONTROL

QUALITY ASSURANCE CRITERIA

			GLOBAL ACCEPTANCE CRITERIA (GAC)						
Accuracy: Precision:	matrix spike: les, crm, method: surrogate spike: laboratory duplicate:	 in first 5-20, then 1 every 20 samples per analytical batch addition per target organic method in first 5-10, then 1 every 10 samples 	Accuracy:	spike, lcs, crm surrogate:	general analytes 70% - 130% recovery phenol analytes 50% - 130% recovery organophosphorous pesticide analytes 60% - 130% recovery phenoxy acid herbicides, organotin 50% - 130% recovery				
	laboratory triplicate:	re-extracted & reported when duplicate RPD values exceed acceptance criteria	Precision:		: +/- 10% (0-3 meq/l), +/- 5% (>3 meq/l) not detected >95% of the reported EQL				
Holding Times:	soils, waters:	Refer to LabMark Preservation & THT table VOC's 14 days water / soil		1	0-30% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)				
		VAC's 7 days water or 14 days acidified VAC's 14 days soil SVOC's 7 days water, 14 days soil		duplicate lab RPD:	0-50% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)				
		Pesticides 7 days water, 14 days soil Metals 6 months general elements Mercury 28 days	QUALITY CONTROL ANALYTE SPECIFIC ACCEPTANCE CRITERIA (ASAC)						
Confirmation:	target organic analysis:	GC/MS, or confirmatory column	Accuracy:	spike, lcs, crm surrogate:	analyte specific recovery data <3xsd of historical mean				
Sensitivity:	EQL:	Typically 2-5 x Method Detection Limit (MDL)	Uncertaint	y: spike, lcs:	measurement calculated from historical analyte specific control charts				
RESULT ANN	OTATION								

Data Quality Objective matrix spike recovery s: Data Quality Indicator d: laboratory duplicate Estimated Quantitation Limit t: laboratory triplicate not applicable r:

RPD relative % difference

p: pending lcs: laboratory control sample certified reference material crm. method blank mb.

bcs: batch specific lcs bmb: batch specific mb

Simon Mills Quality Control (Report signatory) simon.mills@labmark.com.au

Geoff Weir Authorising Chemist (NATA signatory) geoff.weir@labmark.com.au

u

Jeremy Truong Authorising Chemist (NATA signatory) jeremy.truong@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

LabMark Environmental Laboratories ABN 30 008 127 802 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 * Telephone: (02) 9476 6533 * Fax: (02) 9476 8219 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168 * Telephone: (03) 9538 2277 * Fax: (03) 9538 2278

Form QS0144, Rev. 1 : Date Issued 06/02/08

ENVIRONMENTAL LABORATORIES

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Environmenta Laboratory Industry

Foundatio

Group

Laboratory Report: E045449

Cover Page 2 of 3

NEPC GUIDELINE COMPLIANCE - DQO

GENERAL 1. Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or А. surrogate recovery data. B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference. C. Laboratory QA/QC samples are specific to this project. D. Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au. E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction. F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable. G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations. H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date. I. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

2. CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

- A. NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
- B. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
- C. Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277
 * Fax: (03) 9538 2278

ENVIRONMENTAL LABORATORIES

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E045449

Cover Page 3 of 3

4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Matrix:	OTHER						
Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	Metals in Solids and/or Dusts	63	7	11%	0	4	6%
10	Mercury in Solids	63	7	11%	0	4	6%
15	Moisture	63					

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.

%d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).

#t number of triplicate extractions/analyses performed.

#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).

5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, unless indicated below.

B. Metals; Lab # 234762s matrix spike recovery of molybdenum is 66%.

C. Metals; Lab # 234782s matrix spike recovery for antimony is 62%.

D. Metals; Lab # 234821s matrix spike recovery of cobalt is 64% and nickel is 60%.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES</u> <u>NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

S LabMark Environmental laboratories	Client Name:AContact Name:MClient Reference:M			E045449 Australasian (Iron & Steel) Slag Assoc. Mona Forghani MCDS/09			c. plus Date	Page: 1 of 18plus cover pageDate: 11/11/09This report supercedes reports issued or			Final Certificate of Analysis n: N/A		
Laboratory Identification		234761	234762	234763	234764	234765	234766	234767	234768	234769	234770		
Sample Identification		101	102	103	201	202	203	204	205	206	304		
Depth (m)													
Sampling Date recorded on COC		3/9/09	3/9/09	3/9/09	3/9/09	3/9/09	3/9/09	2/9/09	2/9/09	2/9/09	3/9/09		
Laboratory Extraction (Preparation) Date		5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09		
Laboratory Analysis Date		5/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09		
Method : E022.2 Metals in Solids and/or Dusts Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Molybdenum	EQL 100 5 1 50 5 20 0.05 1 5 2 5 10 5	$\begin{array}{r} 49200 \\ <5 \\ <1 \\ 300 \\ 7 \\ 40 \\ <0.05 \\ 5 \\ <5 \\ 2 \\ <5 \\ 1400 \\ <5 \end{array}$	52700 < 5 < 1 330 6 50 <0.05 6 <5 2 <5 1680 <5	50700 <5 <1 320 8 50 0.05 5 <5 3 <5 1700 <5	$\begin{array}{c} 45100 \\ <5 \\ <1 \\ 280 \\ 6 \\ 40 \\ <0.05 \\ 3 \\ <5 \\ <2 \\ <5 \\ 2100 \\ <5 \end{array}$	$\begin{array}{c} 42800 \\ <5 \\ <1 \\ 290 \\ 6 \\ 40 \\ <0.05 \\ 22 \\ <5 \\ <2 \\ <5 \\ 2030 \\ <5 \end{array}$	38400 <5 <1 250 5 30 <0.05 2 <5 2 <5 2 <5 1890 <5	$\begin{array}{r} 32100 \\ <5 \\ <1 \\ 90 \\ 5 \\ 20 \\ <0.05 \\ 10 \\ <5 \\ <2 \\ <5 \\ 540 \\ <5 \end{array}$	$\begin{array}{c} 42300 \\ <5 \\ <1 \\ 140 \\ 10 \\ 40 \\ <0.05 \\ 5 \\ <5 \\ <5 \\ <2 \\ <5 \\ 620 \\ <5 \end{array}$	$34400 <5 <1 \\110 \\8 \\30 <0.05 \\2 <5 \\<2 \\<5 \\460 \\<5 \end{cases}$	$\begin{array}{c} 45100 \\ <5 \\ <1 \\ 240 \\ 8 \\ 60 \\ <0.05 \\ 4 \\ <5 \\ <2 \\ <5 \\ 1510 \\ <5 \end{array}$		
Nickel	1	6	8	8	8	20	7	8	12	10	9		
Selenium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		
Tin Zinc	10 5	<10 7	<10 5	<10 7	<10 <5	<10 <5	<10 <5	<10 <5	<10 <5	<10 <5	<10 <5		

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

CALCEDATER ENVIRONMENTAL LABORATORIES	Client Contac	Client Name:AContact Name:N			E045449 Australasian (Iron & Steel) Slag Assoc. Mona Forghani MCDS/09			Page: 2 of 18 plus cover page Date: 11/11/09 This report supercedes reports issued or					
		234//1	234/72	234773	234774	234775	234776	234777	234778	234779	234780		
Sample Identification		305	306	401	402	403	404	405	406	501	502		
Depth (m)													
Sampling Date recorded on COC		3/9/09	3/9/09	3/9/09	3/9/09	3/9/09	2/9/09	2/9/09	2/9/09	3/9/09	3/9/09		
Laboratory Extraction (Preparation) Date		5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09		
Laboratory Analysis Date		6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09		
Method : E022.2 Metals in Solids and/or Dusts Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Molybdenum Nickel	EQL 100 5 1 50 5 20 0.05 1 5 2 5 10 5 1	$53900 <5 <1 \\280 \\10 \\80 \\0.05 \\6 <5 <2 <5 \\2010 <5 \\11$	$51800 \\ <5 \\ <1 \\ 300 \\ 9 \\ 70 \\ <0.05 \\ 4 \\ <5 \\ <2 \\ <5 \\ 1870 \\ <5 \\ 11$	$\begin{array}{c} 8000 \\ <5 \\ 2 \\ <50 \\ <5 \\ 40 \\ 0.06 \\ 530 \\ <5 \\ 17 \\ <5 \\ 19800 \\ <5 \\ 22 \end{array}$	$7400 < 5 < 1 < 50 < 5 50 0.1 \\ 510 < 5 6 < 5 \\ 23500 < 5 \\ 14$	$\begin{array}{r} 32600 \\ <5 \\ <1 \\ <50 \\ <5 \\ 40 \\ 0.09 \\ 597 \\ <5 \\ 5 \\ <5 \\ 27100 \\ <5 \\ 13 \end{array}$	$\begin{array}{c} 4300 \\ <5 \\ <1 \\ 50 \\ <5 \\ 40 \\ 0.07 \\ 444 \\ <5 \\ 15 \\ <5 \\ 10900 \\ <5 \\ 13 \end{array}$	$ \begin{array}{r} 11800 \\ <5 \\ <1 \\ 50 \\ <5 \\ 40 \\ 0.08 \\ 518 \\ <5 \\ 9 \\ <5 \\ 12700 \\ <5 \\ 16 \\ \end{array} $	$\begin{array}{c} 21700 \\ <5 \\ <1 \\ <50 \\ <5 \\ 40 \\ 0.37 \\ 642 \\ <5 \\ 10 \\ <5 \\ 17800 \\ 42 \\ 15 \end{array}$	$ \begin{array}{r} 19000 \\ <5 \\ <1 \\ <50 \\ <5 \\ 40 \\ 0.14 \\ 660 \\ <5 \\ 8 \\ <5 \\ 19300 \\ <5 \\ 16 \\ \end{array} $	$ \begin{array}{r} 11000 \\ <5 \\ 1 \\ <50 \\ <5 \\ 50 \\ 0.16 \\ 661 \\ 5 \\ 23 \\ <5 \\ 21900 \\ 6 \\ 27 \\ \end{array} $		
Selenium	1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1		
Tin Zinc	10 5	<10 <5	<10 <5	<10 10	<10 11	<10 9	<10 32	<10 29	<10 32	<10 15	<10 12		

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

CALCEDATER ENVIRONMENTAL LABORATORIES Laboratory Identification Sample Identification	Client Name: A Contact Name: N			E045449 Australasian (Iron & Steel) Slag Assoc. Mona Forghani MCDS/09 2 234783 234784 234785 2 505 506 601			e. plus Date				Final Certificate of Analysis a: N/A 234789 234790 605 606	
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		3/9/09 5/11/09 6/11/09	2/9/09 5/11/09 6/11/09	2/9/09 5/11/09 6/11/09	 2/9/09 5/11/09 6/11/09	 13/8/09 5/11/09 6/11/09	13/8/09 5/11/09 6/11/09	13/8/09 5/11/09 6/11/09	 18/8/09 5/11/09 6/11/09	 18/8/09 5/11/09 6/11/09	 18/8/09 5/11/09 6/11/09	
Method : E022.2 Metals in Solids and/or Dusts Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Molybdenum Nickel Selenium Tin Zinc	EQL 100 5 1 50 5 20 0.05 1 5 2 5 10 5 1 1 10 5	20500 <5 <1 <50 <5 40 0.14 678 <5 9 <5 18700 <5 17 <1 <10 21	$ \begin{array}{r} 11100 \\ <5 \\ <1 \\ <50 \\ <5 \\ 50 \\ 0.17 \\ 354 \\ 5 \\ 19 \\ <5 \\ 11100 \\ <5 \\ 26 \\ <1 \\ <10 \\ 125 \end{array} $	$\begin{array}{c} 6600\\ <5\\ <1\\ <50\\ <5\\ 30\\ 0.10\\ 367\\ <5\\ 10\\ <5\\ 10100\\ 5\\ 13\\ <1\\ <10\\ 28\end{array}$	10400 <5 <1 50 <5 50 0.12 331 <5 17 <5 12600 <5 18 <1 <10 93	$\begin{array}{c} 13300 \\ <5 \\ 2 \\ 430 \\ <5 \\ 130 \\ 0.19 \\ 1330 \\ <5 \\ 77 \\ 6 \\ 16200 \\ 6 \\ 16 \\ <1 \\ <10 \\ 115 \end{array}$	$ \begin{array}{r} 16700 \\ <5 \\ 3 \\ 560 \\ <5 \\ 120 \\ 0.19 \\ 1650 \\ <5 \\ 107 \\ 6 \\ 20800 \\ 8 \\ 24 \\ <1 \\ 10 \\ 96 \\ \end{array} $	$\begin{array}{c} 16600 \\ <5 \\ 2 \\ 520 \\ <5 \\ 110 \\ 0.24 \\ 1650 \\ <5 \\ 152 \\ 6 \\ 19800 \\ 7 \\ 27 \\ <1 \\ 10 \\ 101 \end{array}$	$ \begin{array}{r} 16600 \\ <5 \\ 1 \\ 520 \\ <5 \\ 130 \\ 0.28 \\ 4960 \\ <5 \\ 82 \\ <5 \\ 42200 \\ 19 \\ 28 \\ <1 \\ <10 \\ 291 \\ \end{array} $	12200 <5 1 370 <5 60 0.17 3910 <5 95 <5 27800 28 24 <1 <10 130	14900 <5 2 450 <5 70 0.14 3860 <5 88 <5 36100 24 22 <1 <10 353	

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

S LabMark Environmental laboratories	Client Name:AContact Name:NClient Reference:N			E045449 Australasian (Iron & Steel) Slag Assoc. Mona Forghani MCDS/09			c. plus Date This r	Page: 4 of 18plus cover pageDate: 11/11/09This report supercedes reports issued on			Final Certificate of Analysis n: N/A		
Laboratory Identification		234791	234792	234793	234794	234795	234796	234797	234798	234799	234800		
Sample Identification		607	608	609	613	614	615	616	617	618	701		
Depth (m)													
Sampling Date recorded on COC		19/8/09	19/8/09	19/8/09	4/8/09	4/8/09	4/8/09	10/9/09	10/9/09	10/9/09	13/8/09		
Laboratory Extraction (Preparation) Date		5/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09		
Laboratory Analysis Date		6/11/09	6/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09		
Method : E022.2 Metals in Solids and/or Dusts Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Malukhdamum	EQL 100 5 1 50 5 20 0.05 1 5 2 5 10	$26000 < 5 \\ 1 \\ 700 < 5 \\ 80 \\ 0.11 \\ 5500 \\ < 5 \\ 97 \\ < 5 \\ 32200 \\ 11$	$21500 <5 \\ 1 \\ 780 <5 \\ 80 \\ 0.14 \\ 3300 <5 \\ 111 \\ <5 \\ 26100 \\ 14$	20000 <5 1 490 <5 40 0.14 4610 <5 75 <5 24200 12	25500 < 5 2 850 <5 60 0.24 3170 <5 144 <5 23700 12	$28400 <5 \\ 1 \\ 710 <5 \\ 60 \\ 0.51 \\ 4260 \\ <5 \\ 108 \\ 11 \\ 30100 \\ 12$	$\begin{array}{c} 23400 \\ <5 \\ <1 \\ 660 \\ <5 \\ 50 \\ 0.13 \\ 2950 \\ <5 \\ 86 \\ <5 \\ 26500 \\ 7 \end{array}$	$ \begin{array}{r} 15500 \\ <5 \\ <1 \\ 430 \\ <5 \\ 40 \\ 0.27 \\ 6350 \\ <5 \\ 68 \\ <5 \\ 26500 \\ 25 \\ \end{array} $	$ \begin{array}{r} 14200 \\ <5 \\ <1 \\ 400 \\ <5 \\ 30 \\ 0.27 \\ 6040 \\ <5 \\ 65 \\ <5 \\ 23900 \\ 22 \\ \end{array} $	$ \begin{array}{r} 19600 \\ <5 \\ <1 \\ 540 \\ <5 \\ 40 \\ 0.27 \\ 7160 \\ <5 \\ 68 \\ <5 \\ 32800 \\ 20 \\ \end{array} $	$ \begin{array}{r} 18500 \\ <5 \\ 3 \\ 630 \\ <5 \\ 50 \\ 0.19 \\ 1860 \\ <5 \\ 153 \\ 5 \\ 22100 \\ $		
Molybdenum	5	11	14	12	12	12	7	25	23	20	8		
Nickel	1	16	21	17	24	21	14	14	14	15	28		
Selenium		<10	<1	<1	<1	<1	<10	<1	<1	<1	<1		
Tin Zinc	10 5	<10 116	<10 121	<10 61	<10 117	<10 310	<10 81	<10 493	<10 459	<10 294	10 86		

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

OLCIDMENTAL LABORATORIES	Client Name: A Contact Name: N			E045449 Australasian (Mona Forgha MCDS/09	. plus Date	Page: 5 of 18 plus cover page Date: 11/11/09 This report supercedes reports issued or			Final Certificate of Analysis		
Laboratory Identification		234801	234802	234803	234804	234805	234806	234807	234808	234809	234810
Sample Identification		702	703	704	705	706	707	708	709	710	711
Depth (m) Sampling Date recorded on COC		 13/8/09		 18/8/09	 18/8/09	 18/8/09	 19/8/09	 19/8/09	 19/8/09	4/8/09	 4/8/09
Laboratory Extraction (Preparation) Date		9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09
Laboratory Analysis Date		10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09
Method : E022.2 Metals in Solids and/or Dusts Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese	EQL 100 5 1 50 5 20 0.05 1 5 2 5 10	$ \begin{array}{r} 17000 \\ <5 \\ 2 \\ 610 \\ <5 \\ 50 \\ 0.19 \\ 1340 \\ <5 \\ 121 \\ 6 \\ 19700 \\ \end{array} $	$ \begin{array}{r} 19000 \\ <5 \\ 5 \\ 650 \\ <5 \\ 80 \\ 0.30 \\ 2130 \\ 7 \\ 208 \\ 8 \\ 26900 \\ \end{array} $	$ \begin{array}{r} 14600 \\ <5 \\ 2 \\ 410 \\ <5 \\ 50 \\ 0.40 \\ 4640 \\ <5 \\ 81 \\ 5 \\ 30600 \\ \end{array} $	$ \begin{array}{r} 16100 \\ <5 \\ 2 \\ 440 \\ <5 \\ 50 \\ 0.34 \\ 4940 \\ <5 \\ 88 \\ 12 \\ 31900 \\ \end{array} $	$ \begin{array}{r} 13000 \\ <5 \\ 1 \\ 370 \\ <5 \\ 40 \\ 0.25 \\ 4850 \\ <5 \\ 84 \\ <5 \\ 26900 \\ \end{array} $	22900 <5 <1 640 <5 60 0.24 3290 <5 73 <5 23800	26500 <5 2 680 <5 60 0.29 3850 5 135 <5 27500	$\begin{array}{c} 24500 \\ <5 \\ 1 \\ 670 \\ <5 \\ 60 \\ 0.28 \\ 3670 \\ <5 \\ 129 \\ <5 \\ 24800 \end{array}$	$25300 < 5 \\ 1 \\ 690 < 5 \\ 70 \\ 0.50 \\ 4250 \\ < 5 \\ 108 \\ 8 \\ 31500$	$25900 < 5 \\ 3 \\ 690 < 5 \\ 70 \\ 0.58 \\ 4720 \\ 5 \\ 149 \\ 10 \\ 32200$
Molybdenum	5	6	11	19	20	16	8	11	10	11	14
Nickel Selenium	1 1	24 <1	51 <1	27 <1	24 <1	20 <1	20 <1	38 <1	29 <1	29 <1	42 <1
Tin Zinc	10 5	10 92	20 136	<10 278	<10 362	<10 238	<10 90	<10 224	<10 362	<10 442	10 435

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

S LabMark Environmental laboratories	Client Contac	ct Name: Reference:	P N N	E045449 Australasian (Mona Forgha MCDS/09	ni	, C	e. plus Date This re		reports issued of	of Ana n: N/A	<u> </u>
Laboratory Identification		234811	234812	234813	234814	234815	234816	234817	234818	234819	234820
Sample Identification		712	713	714	715	801	802	803	901	902	903
Depth (m)											
Sampling Date recorded on COC		4/8/09	10/9/09	10/9/09	10/9/09	3/9/09	3/9/09	3/9/09	21/8/09	21/8/09	21/8/09
Laboratory Extraction (Preparation) Date		9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09
Laboratory Analysis Date		10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09	10/11/09
Method : E022.2 Metals in Solids and/or Dusts Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Molybdenum Nickel	EQL 100 5 1 50 5 20 0.05 1 5 2 5 10 5 1	26200 < 5 < 1 690 < 5 70 0.32 3440 < 5 182 < 5 27400 9 36	$ \begin{array}{r} 13700 \\ <5 \\ <1 \\ 440 \\ <5 \\ 50 \\ 0.47 \\ 5570 \\ <5 \\ 67 \\ 12 \\ 27300 \\ 39 \\ 23 \\ \end{array} $	$\begin{array}{c} 23400 \\ <5 \\ <1 \\ 620 \\ <5 \\ 70 \\ 0.46 \\ 6810 \\ <5 \\ 69 \\ <5 \\ 36600 \\ 25 \\ 28 \end{array}$	$\begin{array}{c} 14000 \\ <5 \\ <1 \\ 440 \\ <5 \\ 50 \\ 0.59 \\ 6490 \\ <5 \\ 70 \\ 10 \\ 27600 \\ 40 \\ 28 \end{array}$	$ \begin{array}{r} 11900 \\ <5 \\ 2 \\ 50 \\ <5 \\ 30 \\ 0.37 \\ 528 \\ 8 \\ 22 \\ 6 \\ 18700 \\ 12 \\ 63 \\ \end{array} $	$ \begin{array}{r} 11600 \\ <5 \\ 1 \\ 90 \\ <5 \\ 40 \\ 0.59 \\ 491 \\ 7 \\ 33 \\ 19 \\ 22800 \\ 7 \\ 50 \end{array} $	$ \begin{array}{r} 11700 \\ <5 \\ <1 \\ 70 \\ <5 \\ 30 \\ 0.32 \\ 603 \\ 5 \\ 12 \\ 7 \\ 20300 \\ 8 \\ 36 \end{array} $	5100 <5 <1 80 <5 200 0.07 23 <5 7 <5 1390 <5 2	$\begin{array}{c} 8200 \\ <5 \\ <1 \\ 170 \\ <5 \\ 230 \\ 0.15 \\ 16 \\ <5 \\ 11 \\ <5 \\ 2030 \\ <5 \\ 1 \end{array}$	$ \begin{array}{r} 12700 \\ <5 \\ <1 \\ 80 \\ <5 \\ 230 \\ 0.13 \\ 41 \\ <5 \\ 21 \\ <5 \\ 2660 \\ <5 \\ 3 \\ \end{array} $
Selenium	1	<1	23	20	20	<1	<1	<1	<1	<1	<1
Tin Zinc	10 5	<10 123	<10 928	<10 254	<10 782	<10 1130	10 1330	<10 113	<10 16	<10 26	<10 43

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

() LabMark	Labora Client	atory Repor Name:	• • • • • •	E045449 Australasian (Iron & Stee	l) Slag Assoc	0	e: 7 of 18 cover page		Final Cer	tificate
ENVIRONMENTAL LABORATORIES		et Name:		Mona Forgha		i) 5149 1 1550 C		e: 11/11/09		of Ana	
				U	111						ary 515
	Client	Reference:	1	MCDS/09			This r	eport supercedes	reports issued or	n: N/A	
Laboratory Identification		234821	234822	234823	234761d	234761r	234771d	234771r	234781d	234781r	234791d
Sample Identification		904	905	906	QC	QC	QC	QC	QC	QC	QC
Depth (m)											
Sampling Date recorded on COC		21/8/09	21/8/09	21/8/09							
Laboratory Extraction (Preparation) Date		9/11/09	9/11/09	9/11/09	5/11/09		5/11/09		5/11/09		9/11/09
Laboratory Analysis Date		10/11/09	10/11/09	10/11/09	6/11/09		6/11/09		6/11/09		10/11/09
Method : E022.2 Metals in Solids and/or Dusts	EQL										
Aluminium	100	8200	7600	4000	50700	3%	49100	9%	21600	5%	27900
Antimony	5	<5	<5	<5	<5		<5		<5		<5
Arsenic	1	<1	<1	<1	<1		<1		<1		<1
Barium	50	50	50	60	300	0%	260	7%	<50		750
Beryllium	5	<5	<5	<5	7	0%	10	0%	<5		<5
Boron	20	160	110	90	50	22%	70	13%	50	22%	80
Cadmium	0.05	0.10	0.18	0.14	< 0.05		0.05	0%	0.19	30%	0.12
Chromium	1	1120	1230	643	5	0%	6	0%	668	1%	5640
Cobalt	5	12	8	5	<5		<5		<5		<5
Copper	2	15	9	3	2	0%	<2		10	11%	94
Lead	5	<5	<5	<5	<5		<5		<5		<5
Manganese	10	13400	13900	6170	1480	6%	1860	8%	19900	6%	35100
Molybdenum	5	<5	<5	<5	<5		<5		5	>0%	11
Nickel	1	30	26	22	7	15%	11	0%	19	11%	16
Selenium	1	<1	<1	<1	<1		<1		<1		<1
Tin	10	<10	<10	<10	<10		<10		<10		<10
Zinc	5	28	14	<5	5	33%	<5		19	10%	132

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

O LabMark ENVIRONMENTAL LABORATORIES	Client Contac	atory Repor Name: et Name: Reference:	A NOT	E045449 Australasian (Mona Forgha MCDS/09	`) Slag Assoc	e. plus Date	e: 8 of 18 cover page e: 11/11/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		234791r	234801d	234801r	234811d	234811r	234820d	234820r	234762s	234782s	234802s
Sample Identification		QC	QC	QC	QC	QC	QC	QC	QC	QC	QC
Depth (m) Sampling Date recorded on COC											
Laboratory Extraction (Preparation) Date Laboratory Analysis Date			9/11/09 10/11/09		9/11/09 10/11/09		9/11/09 10/11/09		5/11/09 6/11/09	5/11/09 6/11/09	9/11/09 10/11/09
Method : E022.2 Metals in Solids and/or Dusts Aluminium Antimony Arsenic Barium Beryllium Boron Cadmium Chromium Cobalt Copper Lead Manganese Molybdenum Nickel Selenium Tin Zinc	EQL 100 5 1 50 5 20 0.05 1 5 2 5 10 5 1 1 10 5	7% >0% 7% 0% 9% 3% 3% 9% 0% 0% 13%	$ \begin{array}{r} 16700 \\ <5 \\ 4 \\ 610 \\ <5 \\ 50 \\ 0.22 \\ 1440 \\ <5 \\ 176 \\ 6 \\ 22500 \\ 7 \\ 32 \\ <1 \\ 10 \\ 101 \\ 101 \end{array} $	2% 67% 0% 15% 7% 37% 0% 13% 15% 29% 0% 9%	32100 < 5 3 740 < 5 80 0.38 3890 6 156 <5 28400 12 45 <1 20 127	20% >100% 7% 13% 17% 12% >18% 15% 4% 29% 22% >67% 3%	$ \begin{array}{c} 11900 \\ <5 \\ <1 \\ 80 \\ <5 \\ 210 \\ 0.11 \\ 52 \\ 5 \\ 21 \\ <5 \\ 2710 \\ <5 \\ 4 \\ <1 \\ <10 \\ 42 \\ \end{array} $	7% 0% 9% 17% 24% >0% 0% 2% 29% 29%	# 70% 77% # 97% 81% 80% 97% 91% 99% 76% # 66% 94% 76% 73% 112%	# 62% 106% # 82% # 94% # 113% 87% 77% # 81% # 81% # #	# 104% 86% # 98% # 95% # 80% # 83% # 81% # 83% # #

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

O LabMark Environmental laboratories	Client Contac	Client Name:AContact Name:MClient Reference:M			Australasian (Iron & Steel) Slag Assoc Mona Forghani MCDS/09			e: 9 of 18 cover page e: 11/11/09 eport supercedes	reports issued or	Final Certificate of Analysis issued on: N/A		
Laboratory Identification		234821s	mb	mb								
Sample Identification		QC	QC	QC								
Depth (m) Sampling Date recorded on COC												
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		9/11/09 10/11/09	5/11/09 6/11/09	9/11/09 10/11/09								
Method : E022.2Metals in Solids and/or DustsAluminiumAntimonyArsenicBariumBerylliumBoronCadmiumChromiumCobaltCopperLeadManganeseMolybdenumNickelSeleniumTinZinc	EQL 100 5 1 50 5 20 0.05 1 5 2 5 10 5 1 1 10 5 5	# ## 71% # 97% # 94% # 64% 94% 100% # 94% 60% 77% ## 115%	$\begin{array}{c} <100\\ <5\\ <1\\ <50\\ <5\\ <20\\ <0.05\\ <1\\ <5\\ <2\\ <5\\ <10\\ <5\\ <1\\ <1\\ <10\\ <5\end{array}$	$\begin{array}{c} <100\\ <5\\ <1\\ <50\\ <5\\ <20\\ <0.05\\ <1\\ <5\\ <2\\ <5\\ <10\\ <5\\ <1\\ <1\\ <10\\ <5\\ \end{array}$								

Comments: # Percent recovery not available due to significant background levels of analyte in sample. ## Percent recovery not available due to interference from the sample.

S LabMark Environmental laboratories	Client Contac	atory Repor Name: et Name: Reference:	2 1	E045449 Australasian (Mona Forgha MCDS/09) Slag Assoc.	Page: 10 of 18 plus cover page Date: 11/11/09 This report supercedes reports issued 234766 234767 234768			of Ana	t ificate _{Ilysis}
Laboratory Identification		234761 234762 234763 234764 234765 234766 234767 234768 234769							234769	234770	
Sample Identification		101	102	103	201	202	203	204	205	206	304
Depth (m) Sampling Date recorded on COC		3/9/09	3/9/09	3/9/09	3/9/09	 3/9/09	3/9/09	2/9/09	 2/9/09	2/9/09	 3/9/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date	-	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09
Method : E023.2 Mercury in Solids Mercury	EQL 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Comments:

E023.2: Sample digested with mineral acids. Analysis by FIMS.

Laboratory Identification		234771	234772	234773	234774	234775	234776	234777	234778	234779	234780
Sample Identification		305	306	401	402	403	404	405	406	501	502
Depth (m) Sampling Date recorded on COC		 3/9/09	 3/9/09	 3/9/09	 3/9/09	 3/9/09	 2/9/09	 2/9/09	 2/9/09	 3/9/09	 3/9/09
Laboratory Extraction (Preparation) Date		5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09
Laboratory Analysis Date		6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09	6/11/09
Method : E023.2 Mercury in Solids Mercury	EQL 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Results expressed in mg/kg as received unless otherwise specified

Comments:

S LabMark ENVIRONMENTAL LABORATORIES	Client Contae	atory Repor Name: ct Name: Reference:	A NOT	2045449 Australasian (Aona Forgha ACDS/09) Slag Assoc	. plus Date	e: 11 of 18 cover page e: 11/11/09 eport supercedes	reports issued or	of Ana	t ificate alysis
Laboratory Identification		234781	234782	234783	234784	234785	234786	234787	234788	234789	234790
Sample Identification		503	504	505	506	601	602	603	604	605	606
Depth (m) Sampling Date recorded on COC		 3/9/09	 2/9/09	 2/9/09	 2/9/09	 13/8/09	 13/8/09	 13/8/09	 18/8/09	 18/8/09	 18/8/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date	_	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 6/11/09	5/11/09 9/11/09	5/11/09 9/11/09
Method : E023.2 Mercury in Solids Mercury	EQL 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Comments:

E023.2: Sample digested with mineral acids. Analysis by FIMS.

Laboratory Identification		234791	234792	234793	234794	234795	234796	234797	234798	234799	234800
Sample Identification		607	608	609	613	614	615	616	617	618	701
Depth (m) Sampling Date recorded on COC		 19/8/09	 19/8/09	 19/8/09	4/8/09	 4/8/09	4/8/09	 10/9/09	 10/9/09	 10/9/09	 13/8/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		5/11/09 9/11/09	9/11/09 9/11/09	9/11/09 10/11/09							
Method : E023.2 Mercury in Solids Mercury	EQL 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Results expressed in mg/kg as received unless otherwise specified

Comments:

6 LabMark Environmental laboratories	Client Contac	atory Repor Name: et Name: Reference:	A	E045449 Australasian (Iron & Steel) Slag Assoc. Mona Forghani MCDS/09				e: 12 of 18 cover page e: 11/11/09 eport supercedes	reports issued or	of Ana	t ificate _{Ilysis}
Laboratory Identification		234801 234802 234803 234804 234805 234806 234807 234808 234809							234809	234810	
Sample Identification		702	703	704	705	706	707	708	709	710	711
Depth (m) Sampling Date recorded on COC		 13/8/09	 13/8/09	 18/8/09		 18/8/09	 19/8/09	 19/8/09	 19/8/09	 4/8/09	 4/8/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date	_	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09
Method : E023.2 Mercury in Solids Mercury	EQL 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Comments:

E023.2: Sample digested with mineral acids. Analysis by FIMS.

Laboratory Identification		234811	234812	234813	234814	234815	234816	234817	234818	234819	234820
Sample Identification		712	713	714	715	801	802	803	901	902	903
Depth (m) Sampling Date recorded on COC		 4/8/09	 10/9/09	 10/9/09	 10/9/09	 3/9/09	 3/9/09	 3/9/09	 21/8/09	 21/8/09	21/8/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		9/11/09 10/11/09									
Method : E023.2 Mercury in Solids Mercury	EQL 0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Results expressed in mg/kg as received unless otherwise specified

Comments:

6 LabMark Environmental laboratories	Client Contae	atory Repor Name: ct Name: Reference:	A	E045449 Australasian (Iron & Steel) Slag Assoc. Mona Forghani MCDS/09			. plus Date	e: 13 of 18 cover page e: 11/11/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		234821	234822	234823	234761d	234761r	234771d	234771r	234781d	234781r	234791d
Sample Identification		904	905	906	QC	QC	QC	QC	QC	QC	QC
Depth (m) Sampling Date recorded on COC		 21/8/09	 21/8/09	 21/8/09							
Laboratory Extraction (Preparation) Date Laboratory Analysis Date	_	9/11/09 10/11/09	9/11/09 10/11/09	9/11/09 10/11/09	5/11/09 6/11/09		5/11/09 6/11/09		5/11/09 6/11/09		9/11/09 9/11/09
Method : E023.2 Mercury in Solids Mercury	EQL 0.1	<0.1	<0.1	<0.1	<0.1		<0.1		<0.1		<0.1

Comments:

E023.2: Sample digested with mineral acids. Analysis by FIMS.

Laboratory Identification		234791r	234801d	234801r	234811d	234811r	234820d	234820r	234762s	234782s	234802s
Sample Identification		QC	QC	QC	QC	QC	QC	QC	QC	QC	QC
Depth (m) Sampling Date recorded on COC											
Laboratory Analysis Date			9/11/09 10/11/09		9/11/09 10/11/09		9/11/09 10/11/09		5/11/09 6/11/09	5/11/09 6/11/09	 9/11/09 10/11/09
Method : E023.2 Mercury in Solids Mercury	EQL 0.1		<0.1		<0.1		<0.1		84%	93%	92%

Results expressed in mg/kg as received unless otherwise specified

Comments:

S LabMark ENVIRONMENTAL LABORATORIES	Client Contae	atory Repor Name: ct Name: Reference:]	E045449 Australasian (Mona Forgha MCDS/09	l) Slag Assoc	. plus Dat e	e: 14 of 18 cover page e: 11/11/09 eport supercedes	reports issued or	of Ana	t ificate _{Ilysis}
Laboratory Identification		234821s	mb	mb						
Sample Identification		QC	QC	QC						
Depth (m) Sampling Date recorded on COC										
Laboratory Extraction (Preparation) Date Laboratory Analysis Date	-	9/11/09 10/11/09	5/11/09 6/11/09	9/11/09 10/11/09						
Method : E023.2 Mercury in Solids Mercury	EQL 0.1	96%	<0.1	<0.1						

Comments:

S LabMark ENVIRONMENTAL LABORATORIES	Client Contac	atory Repor Name: ct Name: Reference:	A N	2045449 Australasian (Aona Forgha ACDS/09) Slag Assoc	. plus Date	e: 15 of 18 cover page e: 11/11/09 eport supercedes	reports issued or	of Ana	t ificate Ilysis
Laboratory Identification		234761				234765	234766	234767 234768		234769	234770
Sample Identification				103	201	202	203	204	205	206	304
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		3/9/09 3/9/09 3/9/09 3/9 5/11/09 5/11/09 5/1			3/9/09 5/11/09 	 3/9/09 5/11/09 	3/9/09 5/11/09	2/9/09 5/11/09	2/9/09 5/11/09	2/9/09 5/11/09	3/9/09 5/11/09
Method : E005.2 Moisture Moisture	EQL 			1	5	4	5				4

Comments:

E005.2: Moisture by gravimetric analysis. Results are in % w/w.

Laboratory Identification		234771	234772	234773	234774	234775	234776	234777	234778	234779	234780
Sample Identification		305	306	401	402	403	404	405	406	501	502
Depth (m) Sampling Date recorded on COC		 3/9/09	 3/9/09	 3/9/09	 3/9/09	 3/9/09	 2/9/09	 2/9/09	 2/9/09	 3/9/09	 3/9/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09
Method : E005.2 Moisture Moisture	EQL 	4	3	2	2	1				1	3

Results expressed in % w/w unless otherwise specified

Comments:

O LabMark ENVIRONMENTAL LABORATORIES	Client Contae	atory Repor Name: ct Name: Reference:	A	045449 Lustralasian (Iona Forgha ICDS/09) Slag Assoc	. plus Dat e	e: 16 of 18 cover page e: 11/11/09 eport supercedes	reports issued or			
Laboratory Identification		234781				234785	234786 234787		234788	234789	234790	
Sample Identification				505	506	601	602	603	604	605	606	
Depth (m) Sampling Date recorded on COC		3/9/09 2/9/09 2/9/09		2/9/09	 2/9/09	13/8/09	 13/8/09	13/8/09	18/8/09	18/8/09	 18/8/09	
Laboratory Extraction (Preparation) Date Laboratory Analysis Date	_	5/11/09 5/11/09 5/11/			5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09	5/11/09 	
Method : E005.2 Moisture Moisture	EQL 			2	2	2	2					

Comments:

E005.2: Moisture by gravimetric analysis. Results are in % w/w.

Laboratory Identification		234791	234792	234793	234794	234795	234796	234797	234798	234799	234800
Sample Identification		607	608	609	613	614	615	616	617	618	701
Depth (m) Sampling Date recorded on COC		 19/8/09	 19/8/09	 19/8/09	 4/8/09	 4/8/09	 4/8/09	 10/9/09	 10/9/09	 10/9/09	 13/8/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		5/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09
Method : E005.2 Moisture Moisture	EQL 		1								2

Results expressed in % w/w unless otherwise specified

Comments:

O LabMark ENVIRONMENTAL LABORATORIES	Client Contac	atory Repor Name: ct Name: Reference:	A	Iona Forgha) Slag Assoc	. plus Date	e: 17 of 18 cover page e: 11/11/09 eport supercedes	reports issued or			
Laboratory Identification		234801	4801 234802 234803		234804	234805	234806	234807	234808	234809	234810	
Sample Identification		702			705	706	707	708	709	710	711	
Depth (m) Sampling Date recorded on COC		 13/8/09	 13/8/09	 18/8/09	 18/8/09	 18/8/09	 19/8/09	 19/8/09	 19/8/09	 4/8/09	 4/8/09	
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		9/11/09	9/11/09	9/11/09	9/11/09	9/11/09 	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	
Method : E005.2 Moisture Moisture	EQL 	1	1	1	1		1	1	1			

Comments:

E005.2: Moisture by gravimetric analysis. Results are in % w/w.

Laboratory Identification		234811	234812	234813	234814	234815	234816	234817	234818	234819	234820
Sample Identification		712	713	714	715	801	802	803	901	902	903
Depth (m) Sampling Date recorded on COC		 4/8/09	 10/9/09	 10/9/09	 10/9/09	 3/9/09	 3/9/09	 3/9/09	 21/8/09	 21/8/09	 21/8/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09	9/11/09
Method : E005.2 Moisture Moisture	EQL 	1				2	2	2	2	1	1

Results expressed in % w/w unless otherwise specified

Comments:

S LabMark ENVIRONMENTAL LABORATORIES	Client Contac	atory Repor Name: ct Name: Reference:	A N	045449 ustralasian (Iona Forgha ICDS/09) Slag Assoc	. plus Date	e: 18 of 18 cover page e: 11/11/09 eport supercedes	reports issued or			
Laboratory Identification		234821	234822	234823	234761d	234761r	234771d 234771r		234781d	234781r	234791d	
Sample Identification		234821 234822 234823 904 905 906		906	QC	QC	QC	QC	QC	QC	QC	
Depth (m) Sampling Date recorded on COC				21/8/09								
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		9/11/09 9/11/09 9/11		9/11/09	5/11/09		5/11/09		5/11/09		9/11/09 	
Method : E005.2 Moisture Moisture	EQL 	1			7	13%	4	0%	2	0%		

Comments:

E005.2: Moisture by gravimetric analysis. Results are in % w/w.

Laboratory Identification		234791r	234801d	234801r	234811d	234811r	234820d	234820r		
Sample Identification		QC								
Depth (m) Sampling Date recorded on COC										
Laboratory Extraction (Preparation) Date Laboratory Analysis Date			9/11/09		9/11/09		9/11/09			
Method : E005.2 Moisture Moisture	EQL 	-	1	0%	1	0%	1	0%		

Results expressed in % w/w unless otherwise specified

Comments:

Report Date : 5/11/2009 Report Time: 11:02:54AM

Sample

Receipt

Quality, Service, Support

Client Details

aboratory	Reference	Information	

	Client Detai		Laboratory Reference Information					
Client Name: Client Phone:	02 4225 8466	& Steel) Slag Assoc.		ve this information ready contacting Labmark.				
Client Fax:	02 4228 1777		Laboratory Report:	E045449				
Contact Name: Contact Email:	Mona Forghani mforghani@hbmgi		Quotation Number:	Q0718.ES				
Client Address:	PO Box 1194	ioup.com.au	Laboratory Address:	Unit 1, 8 Leighton Pl.				
ment Address.	Wollongong NSW	2500	Laboratory Address.	Asquith NSW 2077				
Project Name:	MCDS/09		Phone:	61 2 9476 6533				
Project Number:	- Not provided -		Fax:	61 2 9476 8219				
CoC Serial Number:			Sample Receipt Contac	ct: Ros Schacht				
Purchase Order:	- Not provided -		Email:	Ros.Schacht@labmark.com.au				
Surcharge:	•	lied (results by 6:30pm on	Reporting Contact:	Leanne Boag				
Comple Matrix	due date) OTHER		Email:	leanne.boag@labmark.com.au				
Sample Matrix: Date Sampled (earli	-	04/08/2009	NATA Accreditation:	13542				
Date Samples Rece		04/11/2009	TGA GMP License:	185-336 (Sydney)				
Date Sample Recei		05/11/2009	APVMA License:	6105 (Sydney)				
Date Preliminary Re		11/11/2009	AQIS Approval:	NO356 (Sydney)				
Client TAT Request	•	11/11/2009	AQIS Entry Permit:	200521534 (Sydney)				
Reporting Require	ments: Electronic	c Data Download required:N	0 I r	nvoice Number: 09EA6739				
Sample Condition:	Samples Samples Samples Security s	eived with samples. Report i received in good order . received with cooling media: received ambient. seals not used . container & chemical preserv	No cooling media .	ed on COC.				
Comments:								
Holding Times:	Note: The Technica		atch that have been receiv /ark cannot guarantee TH	ding Times. ved by the laboratory 78 day(s) after T compliance, refer to the extraction				
	Chemical	preservation of samples sat	tisfactory for requested an	alvtes.				

after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period.

Analysis comments:

Subcontracted Analyses:

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

GRID RE								Re	quest	ted A	nalys	is					
			sts														
			Metals in Solids and/or Dusts														
			o/pu		eq												
		Mercury in Solids	ids a		Not Reported												
		in S	l Sol		ot Re												
		cury	als ir	Moisture													
No. Date Depth	Client Sample ID	Mer	Met	Moi	PREP												
234761 03/09	101	٠	٠	٠	٠												
234762 03/09	102	٠	٠	٠	٠												
234763 03/09	103	٠	٠	٠	٠												
234764 03/09	201	٠	٠	٠	٠												
234765 03/09	202	٠	٠	٠	٠												
234766 03/09	203	٠	٠	٠	٠												
234767 02/09	204	٠	٠	٠	٠												
234768 02/09	205	٠	٠	٠	٠												
234769 02/09	206	٠	٠	٠	٠												
234770 03/09	304	٠	٠	٠	٠											 	
234771 03/09	305	٠	٠	٠	٠												
234772 03/09	306	٠	٠	٠	٠												
234773 03/09	401	٠	٠	٠	٠												<u> </u>
234774 03/09	402	٠	٠	٠	٠											 	<u> </u>
234775 03/09	403	٠	٠	٠	٠												<u> </u>
234776 02/09	404	٠	٠	٠	٠											 	<u> </u>
234777 02/09	405	٠	٠	٠	٠												┣—
234778 02/09	406	٠	•	٠	•												┣—
234779 03/09	501	•	•	٠	٠												┣—
234780 03/09 234781 03/09	502 503	•	•	•	•												┣—
234781 03/09 234782 02/09	503	•	•	•	•									$\left - \right $			┣──
234782 02/09 234783 02/09	505	•	•	•	•												┣—
234783 02/09	506	•	•	•	•												┣—
234785 13/08	601	•	•	•	•			 									⊢
234786 13/08	602	•	•	•	•												⊢
234787 13/08	603	•	•		•												├──
234788 18/08	604	•	•	•	•												┣──
234789 18/08	605	•	•	•	•												┣──
234790 18/08	606	•	•	•	•								 				<u> </u>
234791 19/08	607	•	•	-	•												⊢
234792 19/08	608	•	•	•	•												┣──
		•	•	•	•	L											<u> </u>

Thank you for choosing Labmark to analyse your project samples.

Additional information on www.labmark.com.au

Report Date : 5/11/2009 Report Time: 11:02:54AM

Sample Receipt

Report Date : 5/11/2009 Report Time: 11:02:54AM

Sample Receipt

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

GRID R	EVIEW TABLE							Re	ques	ted A	naly	sis					
									Ĺ		ľ						
			Ists														
			r DL														
			Solids and/or Dusts		ted												
		Mercury in Solids	ids a		Reported												
		in S	l So		Not R												
		.cury	Metals in	Moisture													
No. Date Depth	Client Sample ID	Mer	Met	Moi	PREP												
234793 19/08	609	•	٠	٠	٠												
234794 04/08	613	•	٠	٠	٠												
234795 04/08	614	٠	٠	٠	٠												\vdash
234796 04/08	615	•	٠	٠	٠												
234797 10/09	616	•	٠	٠	٠												
234798 10/09	617	٠	٠	٠	٠												
234799 10/09	618	•	٠	٠	٠												
234800 13/08	701	٠	٠	٠	٠												
234801 13/08	702	٠	٠	٠	٠												
234802 13/08	703	٠	٠	٠	٠												 ┝──
234803 18/08	704	•	٠	٠	٠												┝──
234804 18/08	705	•	٠	٠	٠												┝──
234805 18/08 234806 19/08	706	•	٠	٠	٠												┢──
234806 19/08	707 708	•	•	•	•											 	┝──
234807 19/08	708	•	•	•	•												┝──
234809 04/08	710	•	•	•	•												┢──
234809 04/08	711	•	•	•	•		 										┣─
234810 04/08	712	•	•	•	•												├──
234812 10/09	712	•	•	•	•		 							-			├──
234813 10/09	714	•	÷	•	•								-				<u> </u>
234814 10/09	715	•	÷	•	•	 	 										 -
234815 03/09	801	•	•	•	•												<u> </u>
234816 03/09	802	•	•	•	•												<u> </u>
234817 03/09	803	•	٠	٠	٠												
234818 21/08	901	•	٠	٠	٠												
234819 21/08	902	•	٠	٠	٠												
234820 21/08	903	•	٠	٠	٠												
234821 21/08	904	•	٠	٠	٠										l		
234822 21/08	905	٠	٠	٠	٠												
234823 21/08	906	٠	٠	٠	٠												
	Totals:	63	63	63	63												

Thank you for choosing Labmark to analyse your project samples.

Quality, Service, Support

Sample

Receipt

Notice (SRN) for E045449

									Re	ques	ted A	naly	sis							
		E	>			_		۔ د	E				sse	Molybdenum		_				
	≧	Aluminium	Antimony	nic	Ę	Beryllium	Ę	Cadmium	Chromium	岸	Jer	_	Manganese	bde	<u> </u>	Selenium				
	Mercury	Alum	Antir	Arsenic	Barium	Bery	Boron	Cadr	Chro	Cobalt	Copper	Lead	Mang	Moly	Nickel	Selei	цц	Zinc		
		0			0															
No. Date Depth Client Sample ID	0_ HG_0	MET_0	MET_0	MET_0	MET	MET_0	MET_0	MET_0	MET_0	MET_0	MET_0	MET_0	MET_0	MET_0	MET_0	MET_0	MET_0	MET_0		
140. Date Depth Chent sample iD 234761 03/09 101	<u></u>	≥	≥	≥	≥	≥	≥	≥	≥	≥	≥	≥	≥	≥	≥	≥	≥	≥	┢──╂	
234762 03/09 102	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	┝─┤	
234763 03/09 103	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	┝─┤	
234764 03/09 201	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•		
234765 03/09 202	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234766 03/09 203	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234767 02/09 204	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234768 02/09 205	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234769 02/09 206	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234770 03/09 304	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234771 03/09 305	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234772 03/09 306	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234773 03/09 401	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234774 03/09 402	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234775 03/09 403	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234776 02/09 404	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234777 02/09 405	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234778 02/09 406	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234779 03/09 501	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234780 03/09 502	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234781 03/09 503	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234782 02/09 504	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234783 02/09 505	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234784 02/09 506	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234785 13/08 601	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠		
234786 13/08 602	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	\square	
234787 13/08 603	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	\square	
234788 18/08 604	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	\square	
234789 18/08 605	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	\square	
234790 18/08 606	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	\square	
234791 19/08 607	•	٠	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	\square	
234792 19/08 608	•	•	٠	٠	٠	•	٠	٠	٠	٠	٠	٠	٠	•	٠	•	٠	٠	\square	
234793 19/08 609	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	\square	

Thank you for choosing Labmark to analyse your project samples.

Quality, Service, Support

Report Date : 5/11/2009 Report Time : 11:02:54AM

Sample

Receipt

Notice (SRN) for E045449

										Re	ques	ted A	naly	sis						
) Mercury	_O Aluminium	_O Antimony	_0 Arsenic	_0 Barium	_0 Beryllium	O Boron	_0 Cadmium	Chromium	Cobait	Copper	Lead	Manganese	_O Molybdenum	O Nickel	_0 Selenium	O Tin	_0 Zinc	
No. Date Depth	Client Sample ID	HG_0	MET_0	MET_0	MET_O	MET_O	MET_0	MET_0	MET_O	MET_0	MET_0	MET_0	MET_O	MET_0	MET_0	MET_O	MET_0	MET_0	MET_0	
234794 04/08	613	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234795 04/08	614	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234796 04/08	615	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234797 10/09	616	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234798 10/09	617	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234799 10/09	618	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234800 13/08	701	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234801 13/08	702	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234802 13/08	703	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234803 18/08	704	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234804 18/08	705	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234805 18/08	706	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234806 19/08	707	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	
234807 19/08	708	•	•	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	
234808 19/08	709	•	•	•	٠	٠	٠	•	٠	٠	٠	٠	٠	•	•	٠	٠	٠	٠	
234809 04/08	710	•	٠	•	٠	٠	٠	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	
234810 04/08	711	•	•	•	٠	٠	•	•	٠	•	•	٠	٠	•	•	•	٠	٠	٠	 ļ
234811 04/08	712	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	<u> </u>
234812 10/09	713	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
234813 10/09	714	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
234814 10/09	715	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
234815 03/09	801	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
234816 03/09	802	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
234817 03/09	803	•	•	•	•	• •	•	•	•	•	• •	•	•	•	•	•	•	•	•	
234818 21/08	901 902	÷	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	÷	•	
234819 21/08 234820 21/08	902	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	
234820 21/08 234821 21/08	903	•	•	•	•	•	•	•	÷	•	•	•	•	•	•	•	•	•	•	
234821 21/08	905	÷	•	÷	•	•	•	•	•	•	•	•	•	•	÷	•	•	•	•	
234822 21/08	905	•	•	÷	•	•	•	•	÷	•	•	•	•	•	÷	•	•	•	•	-
234023 21/00	Totals:	• 63	• 63	• 63	• 63	63	• 63	• 63	• 63	• 63	• 63	• 63	• 63	63	• 63	• 63	• 63	• 63	• 63	
	10(a)5.	03	03	03	05	05	03	03	05	03	03	05	03	03	03	05	03	05	03	

Thank you for choosing Labmark to analyse your project samples.

Accredited for compliance with ISO/IEC 17025. The Accretine to compute with more results of tests, calibrations and/or measurements included in this document are traceable to Australian/national standards. NATA is a signatory to the APIAC mutual recognition arrangement for the Austantian automation and a samados in ATA is a signatory to the APLAC mutual recognition arrangement for the mutual recognition of the equivalence of testing, calibration and inspection reports.

AOIS AUSTRALIAN QUARANTINE AND INSPECTION SERVICE

SYDNEY License No. N0356

Quarantine Approved Premises criteria 5.1 for quarantine Quarantine Approved Premises criteria 5.1 for quarantine containment level 1 (QCI) facilities. Class five criteria cover premises utilised for research, analysis and testing of biological material, soil, animal, plant and human products.

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

FINAL CERTIFICATE OF ANALYSIS - ENVIRONMENTAL DIVISION

E046157 Laboratory Report No: Australasian (Iron & Steel) Slag Assoc. **Client Name:** MCDS/09 Additional **Client Reference:** Mona Forghani **Contact Name: Chain of Custody No:** na SOIL Sample Matrix:

Cover Page 1 of 3 plus Sample Results

Date Received: 16/12/2009 Date Reported: 29/12/2009

This Final Certificate of Analysis consists of sample results, DQI's, method descriptions, laboratory definitions, and internationally recognised NATA accreditation and endorsement. The DQO compliance relates specifically to QA/QC results as performed as part of the sample analysis, and may provide an indication of sample result quality. Transfer of report ownership from Labmark to the client shall only occur once full & final payment has been settled and verified. All report copies may be retracted where full payment has not occured within the agreed settlement period.

QUALITY CONTROL

QUALITY ASSURANCE CRITERIA

			GLOBAL A	CCEPTANCE (CRITERIA (GAC)
Accuracy: Precision:	matrix spike: lcs, crm, method: surrogate spike: laboratory duplicate:	 1 in first 5-20, then 1 every 20 samples 1 per analytical batch addition per target organic method 1 in first 5-10, then 1 every 10 samples 	Accuracy:	spike, lcs, crm surrogate:	general analytes 70% - 130% recovery phenol analytes 50% - 130% recovery organophosphorous pesticide analytes 60% - 130% recovery phenoxy acid herbicides, organotin 50% - 130% recovery
	laboratory triplicate:	re-extracted & reported when duplicate RPD values exceed acceptance criteria	Precision:	anion/cation bal	: +/- 10% (0-3 meq/l), +/- 5% (>3 meq/l) not detected >95% of the reported EQL
Holding Times:	soils, waters:	Refer to LabMark Preservation & THT table VOC's 14 days water / soil		duplicate lab	0-30% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)
		VAC's 7 days water or 14 days acidified VAC's 14 days soil SVOC's 7 days water, 14 days soil		duplicate lab RPD:	0-50% (>10xEQL), 0-75% (5-10xEQL) 0-100% (<5xEQL)
		Pesticides 7 days water, 14 days soil Metals 6 months general elements Mercury 28 days	-	CONTROL	CEPTANCE CRITERIA (ASAC)
Confirmation:	target organic analysis:	GC/MS, or confirmatory column	Accuracy:	spike, lcs, crm surrogate:	analyte specific recovery data <3xsd of historical mean
Sensitivity:	EQL:	Typically 2-5 x Method Detection Limit (MDL)	Uncertaint	y: spike, lcs:	measurement calculated from historical analyte specific control charts
RESULT ANN	OTATION				charts

Data Quality Objective matrix spike recovery s: Data Quality Indicator d: Estimated Quantitation Limit t: not applicable r:

laboratory duplicate laboratory triplicate RPD relative % difference p: pending lcs: laboratory control sample certified reference material crm. method blank mb.

bcs: batch specific lcs bmb: batch specific mb

Simon Mills Quality Control (Report signatory) simon.mills@labmark.com.au

Geoff Weir Authorising Chemist (NATA signatory) geoff.weir@labmark.com.au

nu

Jeremy Truong Authorising Chemist (NATA signatory) jeremy.truong@labmark.com.au

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

LabMark Environmental Laboratories ABN 30 008 127 802 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077 * Telephone: (02) 9476 6533 * Fax: (02) 9476 8219 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168 * Telephone: (03) 9538 2277 * Fax: (03) 9538 2278

Form QS0144, Rev. 1 : Date Issued 06/02/08

ENVIRONMENTAL LABORATORIES

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Environmenta Laboratory Industry

Foundatio

Group

Laboratory Report: E046157

Cover Page 2 of 3

NEPC GUIDELINE COMPLIANCE - DQO

GENERAL 1. Results relate specifically to samples as received. Sample results are not corrected for matrix spike, lcs, or А. surrogate recovery data. B. EQL's are matrix dependant and may be increased due to sample dilution or matrix interference. C. Laboratory QA/QC samples are specific to this project. D. Inter-laboratory proficiency results are available upon request. NATA accreditation details available at www.nata.asn.au. E. VOC spikes & surrogates added to samples during extraction, SVOC spikes & surrogates added prior to extraction. F. Recovery data outside GAC limits shall be investigated and compared to ASAC (historical mean +/- 3sd). If recovery data <20%, then the relevant results for that compound are considered not reliable. G. Recovery data (ms, surrogate, crm, lcs) outside ASAC limits shall initiate an investigative action. Anomolous QC data is examined in conjunction with other QC samples and a final decision whether to accept or reject results is provided by the professional judgement of the senior analyst. The USEPA-CLP National Functional Guidelines are referred to for specific recommendations. H. Extraction (preparation) date refers to the date that sample preparation was initiated. Note that certain methods not requiring sample preparation (eg. VOCs in water, etc) may report a common extraction and analysis date. I. LabMark shall maintain an official copy of this Certificate of Analysis for all tracable reference purposes.

2. CHAIN OF CUSTODY (COC) & SAMPLE RECEIPT NOTICE (SRN) REQUIREMENTS

- A. SRN issued to client upon sample receipt & login verification.
- B. Preservation & sampling date details specified on COC and SRN, unless noted.
- C. Sample Integrity & Validated Time of Sample Receipt (VTSR) Holding Times verified (preservation may extend holding time, refer to preservation chart).

3. NATA ACCREDITED METHODS

- A. NATA accreditation held for each in-house method and sample matrix type reported, unless noted below (Refer to subcontracted test reports for NATA accreditation status).
- B. NATA accredited in-house laboratory methods are referenced from NEPC, ASTM, modified USEPA / APHA documents. Corporate Accreditation No. 13542.
- C. Subcontracted analyses: Refer to Sample Receipt Notice and additional DQO comments.

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277
 * Fax: (03) 9538 2278

ENVIRONMENTAL LABORATORIES

CUSTOMER CENTRIC - ANALYTICAL CHEMISTS

Laboratory Report: E046157

Cover Page 3 of 3

4. QA/QC FREQUENCY COMPLIANCE TABLE SPECIFIC TO THIS REPORT

Matrix: SOIL-LEACHATE

Page:	Method:	Totals:	#d	%d-ratio	#t	#s	%s-ratio
1	TCLP Preparation	51	6	12%	0	4	8%
7	TCLP metals	51	6	12%	0	4	8%

GLOSSARY:

#d number of discrete duplicate extractions/analyses performed.

%d-ratio NEPC guideline for laboratory duplicates is 1 in 10 samples (min 10%).

#t number of triplicate extractions/analyses performed.

#s number of spiked samples analysed.

%s-ratio USEPA guideline for laboratory matrix spikes is 1 in 20 samples (min 5%).

5. ADDITIONAL COMMENTS SPECIFIC TO THIS REPORT

A. All tests were conducted by LabMark Environmental Sydney, NATA accreditation No. 13542, unless indicated below.

Laboratory QA/QC data shall relate specifically to this report, and may provide an indication of site specific sample result quality. LabMark <u>DOES</u> <u>NOT</u> report <u>NON-RELEVANT BATCH QA/QC</u> data. Acceptance of this self assessment certificate does not preclude any requirement for a QA/QC review by a accredited contaminated site EPA auditor, when and wherever necessary. Laboratory QA/QC self assessment references available upon request.

This document is issued in accordance with NATA's accreditation requirements.

Copyright 2000

 LabMark Environmental Laboratories
 ABN 30 008 127 802

 * SYDNEY: Unit 1, 8 Leighton Place Asquith NSW 2077
 * MELBOURNE: 1868 Dandenong Road, Clayton VIC 3168

 * Telephone: (02) 9476 6533
 * Fax: (02) 9476 8219
 * Telephone: (03) 9538 2277
 * Fax: (03) 9538 2278

O LabMark Environmental laboratories	Client Contae	atory Repor Name: ct Name: Reference:		E046157 Australasian (Mona Forgha MCDS/09 Ad	ni) Slag Assoc	. plus Date	e: 1 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		241998	242002	242003	242004	242005	242006	242007	242008	242009	242010
Sample Identification		401	402	403	404	405	406	501	502	503	504
Depth (m) Sampling Date recorded on COC		 3/9/09	 3/9/09	 3/9/09	 2/9/09	 2/9/09	 2/9/09	3/9/09	3/9/09	3/9/09	 2/9/09
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		21/12/09	21/12/09	21/12/09	21/12/09	21/12/09 	21/12/09	21/12/09	21/12/09	21/12/09	21/12/09
Method : E019.2 TCLP Preparation TCLP Fluid No. Initial pH (pH units) pH after HCl (pH units) Final pH (pH units)	EQL 	2 11.0 9.4 5.4	2 10.8 10.3 5.3	1 9.9 3.2 6.6	2 10.8 10.4 5.1	2 10.2 11.0 7.1	2 10.1 6.9 6.4	2 11.3 11.6 11.1	2 11.3 11.6 11.2	2 11.4 11.6 10.5	2 11.7 11.8 10.5

Comments:

O LabMark Environmental laboratories	Client Contac	atory Repor Name: ct Name: Reference:		E046157 Australasian (Mona Forgha MCDS/09 Ad	ni	l) Slag Assoc	. plus Date	e: 2 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		242011	242012	242013	242014	242015	242016	242017	242018	242019	242020
Sample Identification		505	506	801	802	803	601	602	603	604	605
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date			2/9/09 21/12/09 	3/9/09 21/12/09	 3/9/09 21/12/09 	3/9/09 21/12/09 	13/8/09 21/12/09	13/8/09 21/12/09	 13/8/09 21/12/09 	 18/8/09 21/12/09 	18/8/09 21/12/09
Method : E019.2 TCLP Preparation TCLP Fluid No. Initial pH (pH units) pH after HCl (pH units) Final pH (pH units)	EQL 	2 11.6 11.8 10.8	2 11.7 11.1 10.5	2 11.2 11.2 11.0	2 11.3 11.2 7.2	2 11.1 11.4 8.5	2 10.6 9.9 6.5	2 10.6 9.8 6.4	2 10.5 9.2 6.4	2 10.2 9.0 5.0	2 10.9 9.9 5.3

Comments:

O LabMark Environmental laboratories	Client Contac	atory Repor Name: ct Name: Reference:		E046157 Australasian (Mona Forgha MCDS/09 Ac	ni	l) Slag Assoc	. plus Date	e: 3 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		242021	242022	242023	242024	242025	242026	242027	242028	242029	242030
Sample Identification		606	607	608	609	613	614	615	616	617	618
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		 18/8/09 21/12/09 	19/8/09 21/12/09	 19/8/09 21/12/09 	 19/8/09 21/12/09 	 4/8/09 21/12/09 	4/8/09 21/12/09	 4/8/09 21/12/09 	 10/9/09 21/12/09 	 10/9/09 21/12/09 	 10/9/09 21/12/09
Method : E019.2 TCLP Preparation TCLP Fluid No. Initial pH (pH units) pH after HCl (pH units) Final pH (pH units)	EQL 	2 10.6 8.6 5.0	2 10.7 9.5 4.9	2 10.9 8.9 5.0	2 10.6 7.1 4.9	2 10.6 7.6 4.8	2 10.1 7.4 5.0	2 10.2 6.9 4.8	1 10.1 3.7 6.0	1 10.2 3.5 5.8	1 8.4 3.5 5.8

Comments:

O LabMark Environmental laboratories	Client Contac	atory Repor Name: et Name: Reference:		E046157 Australasian (Mona Forgha MCDS/09 Ac	ni) Slag Assoc	. plus Date	e: 4 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		242031	242032	242033	242034	242035	242036	242037	242038	242039	242040
Sample Identification		701	702	703	704	705	706	707	708	709	710
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		13/8/09 21/12/09	13/8/09 21/12/09	 13/8/09 21/12/09 	 13/8/09 21/12/09 	 18/9/09 21/12/09 	 18/9/09 21/12/09 	 19/8/09 21/12/09 	 19/8/09 21/12/09 	 19/8/09 21/12/09 	 4/8/09 21/12/09
Method : E019.2 TCLP Preparation TCLP Fluid No. Initial pH (pH units) pH after HCl (pH units) Final pH (pH units)	EQL 	2 9.1 9.8 6.8	2 10.3 9.9 6.6	2 10.3 9.5 6.8	2 10.4 9.0 5.6	1 10.1 4.1 8.4	1 10.2 4.8 9.1	2 10.5 9.8 5.1	2 10.5 5.8 5.4	1 10.4 4.1 8.6	2 10.2 5.5 6.0

Comments:

O LabMark Environmental laboratories	Client Contac	atory Repor Name: ct Name: Reference:		E046157 Australasian (Mona Forgha MCDS/09 Ad	ni	l) Slag Assoc	. plus Date	e: 5 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		242041	242042	242043	242044	242045	242046	242047	242048	242049	242050
Sample Identification		711	712	713	714	715	901	902	903	904	905
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		 4/8/09 21/12/09 	 4/8/09 21/12/09 	 10/9/09 21/12/09 	 10/9/09 21/12/09 	 10/9/09 21/12/09 	21/8/09 21/12/09	21/8/09 21/12/09	 21/8/09 21/12/09 	 21/8/09 21/12/09 	21/8/09 21/12/09
Method : E019.2 TCLP Preparation TCLP Fluid No. Initial pH (pH units) pH after HCl (pH units) Final pH (pH units)	EQL 	2 10.2 6.4 5.9	1 10.5 4.3 9.5	1 10.1 3.1 5.3	1 9.1 3.8 4.9	1 9.2 3.4 4.3	1 9.0 3.3 3.6	1 8.8 3.1 3.7	1 8.7 3.0 3.6	2 12.1 12.2 6.8	2 12.2 12.2 11.3

Comments:

O LabMark Environmental laboratories	Client Contac	atory Report Name: et Name: Reference:	No:	E046157 Australasian Mona Forgha MCDS/09 Ac	ni	l) Slag Assoc	e. plus Date	e: 6 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		242051									
Sample Identification		906									
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date		 21/8/09 21/12/09									
Laboratory Analysis Date											
Method : E019.2 TCLP Preparation TCLP Fluid No. Initial pH (pH units) pH after HCl (pH units) Final pH (pH units)	EQL 	2 12.2 12.2 10.9									

Comments:

S LabMark ENVIRONMENTAL LABORATORIES	Client Contac	atory Repor Name: ct Name: Reference:	A N	046157 Australasian (Aona Forgha ACDS/09 Ad	ni	l) Slag Assoc	. plus Date	e: 7 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate _{alysis}
Laboratory Identification	Chent	241998	242002	242003	242004	242005	242006	242007	242010		
Sample Identification		401	402	403	404	405	406	501	502	503	504
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		 3/9/09 22/12/09 22/12/09	 3/9/09 22/12/09 22/12/09	 3/9/09 22/12/09 22/12/09	2/9/09 22/12/09 22/12/09	 2/9/09 22/12/09 22/12/09	2/9/09 22/12/09 22/12/09	 3/9/09 22/12/09 22/12/09	 3/9/09 22/12/09 22/12/09	 3/9/09 22/12/09 22/12/09	2/9/09 22/12/09 22/12/09
Method : E022.1 TCLP metals Chromium Copper Molybdenum Nickel Zinc	EQL 50 50 10 50 50	<50 <50 <10 <50	<50 <50 <10 <50	<50 <50 <10 <50	<50 <50 <10 50	<50 <50 <10 <50	<50 <50 <10 <50	<50 <50 340 <50	<50 <50 370 <50	<50 <50 310 <50	<50 <50 320 <50

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

O LabMark Environmental laboratories	Client	atory Repor Name: ct Name:	A N	Iona Forgha	ni) Slag Assoc	. plus Date	e: 8 of 13 cover page e: 29/12/09		of Ana	t ificate
	Client	Reference:	-	1CDS/09 Ad	-	242015			reports issued or	-	242020
Laboratory Identification		242011	242012	242013	242014	242015	242016	242017	242018	242019	242020
Sample Identification		505	506	801	802	803	601	602	603	604	605
Depth (m)											
Sampling Date recorded on COC		2/9/09	2/9/09	3/9/09	3/9/09	3/9/09	13/8/09	13/8/09	13/8/09	18/8/09	18/8/09
Laboratory Extraction (Preparation) Date		22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09
Laboratory Analysis Date		22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09	22/12/09
Method : E022.1											
TCLP metals	EQL										
Chromium	50	<50	<50	<50	<50	<50	<50	<50	<50	790	730
Copper	50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50
Lead	10			<10	<10	<10					
Molybdenum	10						40	40	40	10	10
Nickel	50	310	330	230	200	210	220	230	210	120	200
Zinc	50	<50	<50	<50	<50	<50	620	490	470	570	760

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

O LabMark Environmental laboratories	Client Contac	atory Repor Name: et Name: Reference:	A	046157 Australasian (Aona Forgha ACDS/09 Ad	ni) Slag Assoc	. plus Dat e	e: 9 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate ^{alysis}
Laboratory Identification		242021	242022	242023	242024	242025	242026	242027	242028	242029	242030
Sample Identification		606	607	608	609	613	614	615	616	617	618
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		 18/8/09 22/12/09 22/12/09	 19/8/09 22/12/09 22/12/09	 19/8/09 22/12/09 22/12/09	 19/8/09 22/12/09 22/12/09	4/8/09 22/12/09 22/12/09	4/8/09 22/12/09 22/12/09	 4/8/09 22/12/09 22/12/09	 10/9/09 22/12/09 22/12/09	 10/9/09 22/12/09 22/12/09	 10/9/09 22/12/09 22/12/09
Method : E022.1 TCLP metals Chromium Copper Molybdenum Nickel Zinc	EQL 50 50 10 50 50 50 50 50	670 <50 <10 130 300	$1060 \\ <50 \\ <10 \\ 160 \\ 410$	710 <50 <10 170 250	490 60 <10 110 320	360 <50 <10 100 270	640 <50 <10 160 3030	490 <50 <10 120 110	<50 <50 20 100 220	<50 <50 20 90 300	50 <50 20 90 510

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

O LabMark Environmental laboratories	Client Contac	atory Repor Name: et Name: Reference:	A N	E046157 Australasian (Aona Forgha ACDS/09 Ad	ni	l) Slag Assoc	. plus Date	e: 10 of 13 cover page e: 29/12/09 eport supercedes	reports issued of	of Ana	tificate ^{alysis}
Laboratory Identification		242031	242032	242033	242034	242035	242036	242037	242038	242039	242040
Sample Identification		701	702	703	704	705	706	707	708	709	710
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		13/8/09 22/12/09 22/12/09	 13/8/09 22/12/09 22/12/09	 13/8/09 22/12/09 22/12/09	 13/8/09 22/12/09 22/12/09	 18/9/09 22/12/09 22/12/09	 18/9/09 22/12/09 22/12/09	 19/8/09 22/12/09 22/12/09	 19/8/09 22/12/09 22/12/09	 19/8/09 22/12/09 22/12/09	 4/8/09 22/12/09 22/12/09
Method : E022.1 TCLP metals Chromium Copper Molybdenum Nickel Zinc	EQL 50 50 10 50 50 50 50	<50 <50 50 220 <50	<50 <50 40 240 120	<50 <50 40 220 160	$100 < 50 \\ 20 \\ 160 \\ 750$	50 <50 30 90 <50	140 <50 30 90 <50	560 <50 <10 150 810	500 <50 <10 160 770	<50 <50 10 110 <50	50 <50 20 190 760

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

O LabMark Environmental laboratories	Client Contac	atory Repor Name: ct Name: Reference:	A	046157 Australasian (Aona Forgha ACDS/09 Ad	ni) Slag Assoc	. plus Date	e: 11 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	tificate alysis
Laboratory Identification		242041	242042	242043	242044	242045	242046	242047	242048	242049	242050
Sample Identification	711 712			713	714	715	901	902	903	904	905
Depth (m) Sampling Date recorded on COC Laboratory Extraction (Preparation) Date Laboratory Analysis Date		 4/8/09 22/12/09 22/12/09	 4/8/09 22/12/09 22/12/09	 10/9/09 22/12/09 22/12/09	 10/9/09 22/12/09 23/12/09	 10/9/09 22/12/09 23/12/09	 21/8/09 22/12/09 23/12/09	 21/8/09 22/12/09 23/12/09	 21/8/09 22/12/09 23/12/09	 21/8/09 22/12/09 23/12/09	 21/8/09 22/12/09 23/12/09
Method : E022.1 TCLP metals Chromium Copper Molybdenum Nickel Zinc	EQL 50 50 10 50 50 50 50	70 <50 20 200 1970	<50 <50 10 100 <50	110 <50 20 70 280	2400 50 10 90 850	$1460 < 50 \\ 10 \\ 60 \\ 1080$	 <50 <50	 <50 <50	 <50 <50	<50 <50 <10 210 <50	<50 <50 <10 250 <50

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

S LabMark ENVIRONMENTAL LABORATORIES	Client Contac	et Name:	A	Iona Forgha	ni) Slag Assoc	. plus Date	e: 12 of 13 cover page e: 29/12/09	reports issued or	of Ana	tificate alysis
Laboratory Identification	Client	Reference: 242051	N 241998d	1CDS/09 Ad	242009d	242009r	242016d	242016r	242025d	242025r	242037d
Sample Identification		906	QC	QC	QC	QC	QC	QC	QC	QC	QC
Depth (m) Sampling Date recorded on COC		21/8/09				 					
Laboratory Extraction (Preparation) Date Laboratory Analysis Date		22/12/09 23/12/09	22/12/09 22/12/09		22/12/09 22/12/09		22/12/09 22/12/09		22/12/09 22/12/09		22/12/09 22/12/09
Method : E022.1 TCLP metals Chromium Copper Molybdenum Nickel Zinc	EQL 50 50 10 50 50 50 50	<50 50 <10 310 <50	<50 <50 <10 <50	 	<50 50 340 <50	 >0% 9% 	<50 <50 40 220 610	 0% 0% 2%	360 <50 <10 100 260	0% 0% 4%	560 <50 <10 150 810

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

6 LabMark Environmental laboratories	Client Contac	atory Repor Name: et Name: Reference:	A	046157 Australasian (Aona Forgha ACDS/09 Ad	ni) Slag Assoc	. plus Date	e: 13 of 13 cover page e: 29/12/09 eport supercedes	reports issued or	of Ana	t ificate alysis
Laboratory Identification		242037r	242049d	242049r	242002s	242026s	242050s	242010s	lcs	mb	
Sample Identification	QC QC			QC	QC	QC	QC	QC	QC	QC	
Depth (m) Sampling Date recorded on COC											
Laboratory Extraction (Preparation) Date Laboratory Analysis Date			22/12/09 23/12/09		22/12/09 22/12/09	22/12/09 22/12/09	22/12/09 23/12/09	22/12/09 22/12/09	22/12/09 22/12/09	22/12/09 22/12/09	
Method : E022.1 TCLP metals Chromium Copper Lead Molybdenum Nickel Zinc	EQL 50 50 10 10 50 50 50 50	0% 0% 0%	<50 <50 <10 210 <50	 0% 	86% 102% 105% 102%	# 90% 110% 87% #	102% 97% 96% 125% 97%	85% 105% 100% 103%	97% 117% 96% 111% 91% 100%	<50 <50 <10 <10 <50 <50	

Comments: # Percent recovery not available due to significant background levels of analyte in sample.

Report Date : 16/12/2009 Report Time: 3:51:22PM

Sample

Receipt

Quality, Service, Support

Client Details

aboratory	Reference	Informatio	n

			Laboratory	
Client Name:		& Steel) Slag Assoc.		ve this information ready
Client Phone:	02 4225 8466		when	contacting Labmark.
Client Fax:	02 4228 1777		Laboratory Danarty	5040457
Contact Name:	Mona Forghani		Laboratory Report:	E046157
Contact Email:	mforghani@hbmg	roup.com.au	Quotation Number:	Q0718.ES
Client Address:	PO Box 1194	10500	Laboratory Address:	Unit 1, 8 Leighton Pl.
	Wollongong NSW	2500		Asquith NSW 2077
Project Name:	MCDS/09 Addition	nal	Phone:	61 2 9476 6533
Project Number:	- Not provided -		Fax:	61 2 9476 8219
CoC Serial Number	•		Sample Receipt Conta	ct: Ros Schacht
Purchase Order:	- Not provided -		Email:	Ros.Schacht@labmark.com.au
Surcharge:		lied (results by 6:30pm on	Reporting Contact:	Leanne Boag
	due date)		Email:	leanne.boag@labmark.com.au
Sample Matrix:	SOIL			• -
Date Sampled (earl	•	04/08/2009	NATA Accreditation:	13542 185 220 (Dude su)
Date Samples Receind Date Sample Receind		16/12/2009	TGA GMP License:	185-336 (Sydney)
Date Preliminary R	-	16/12/2009	APVMA License: AQIS Approval:	6105 (Sydney)
Client TAT Reques	•	30/12/2009	AQIS Approval: AQIS Entry Permit:	NO356 (Sydney) 200521534 (Sydney)
		<u>30/12/2009</u>	· ·	
Reporting Require		c Data Download required:		nvoice Number: 09EA7454
Sample Condition:	Samples Samples Samples Security	eived with samples. Report received in good order . received with cooling media received chilled. seals not applicable. Sample container & chemical preserv	a: Fridge . es in LabMark's custody .	ed on COC.
Comments:	Additiona	Il request from LabMark Job	E045449.	
Holding Times:	Date rece	eived allows for sufficient tin	ne to meet Technical Holdin	ng Times.
Preservation:	Chemical	preservation of samples sa	atisfactory for requested an	alvtes.

sample disposal fee of \$1.00 is applicable on all samples received by the laboratory regardless of whether they have undergone analytical testing. Sample disposal of environmental samples shall be 31 days (water) and 3 months (soil, HN03 preserved samples) after laboratory receipt, unless otherwise requested in writing by the client. Samples requested to be held in non-refrigerated storage shall incur \$5.00/ sample/ 3 months. Additional refrigerated storage shall incur \$30/ sample/ 3 months. Combination prices apply only if requested. Transfer of report ownership from LabMark to the client shall occur once full and final payment has been settled and verified. All report copies may be retracted where full payment does not occur within the agreed settlement period.

Analysis comments:

Subcontracted Analyses:

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

GRID REVIEW TABLE							Re	ques	ted A	nalys	sis				
		ted	ted	~											
		Not Reported	Not Reported	Preparation											
	etals	ot R	ot R	epar											
	TCLP metals			P Pr											
No. Date Depth Client Sample ID	TCL	PREP	PREP	TCLP											
241998 03/09 401	٠	٠	٠	٠											
242002 03/09 402	٠	٠	٠	٠											
242003 03/09 403	٠	٠	٠	٠											
242004 02/09 404	٠	٠	٠	٠											
242005 02/09 405	٠	٠	٠	٠											
242006 02/09 406	٠	٠	٠	٠											
242007 03/09 501	٠	٠	٠	٠	 										
242008 03/09 502	٠	٠	٠	٠											
242009 03/09 503	٠	٠	٠	٠											
242010 02/09 504	٠	٠	٠	٠											
242011 02/09 505	٠	٠	٠	٠											
242012 02/09 506	٠	٠	٠	٠										 	
242013 03/09 801	٠	٠	٠	٠										 	
242014 03/09 802	٠	٠	٠	٠											
242015 03/09 803	٠	٠	٠	٠											
242016 13/08 601	٠	٠	٠	٠	 										
242017 13/08 602	٠	٠	٠	٠								 			
242018 13/08 603	٠	٠	٠	٠			<u> </u>					 <u> </u>	 		<u> </u>
242019 18/08 604	٠	٠	٠	٠		 						 	 		<u> </u>
242020 18/08 605	٠	٠	٠	٠		 						 	 		<u> </u>
242021 18/08 606	٠	٠	٠	٠								 	 		<u> </u>
242022 19/08 607	٠	٠	٠	٠								 	 		
242023 19/08 608	٠	٠	٠	٠								 	 		
242024 19/08 609	٠	٠	٠	٠								 	 		
242025 04/08 613 242026 04/08 614	٠	٠	٠	٠								 	 		
242026 04/08 614 242027 04/08 615	٠	٠	٠	٠								 	 		<u> </u>
	٠	٠	٠	٠								 	 		
242028 10/09 616 242020 10/00 617	•	•	•	•								 	 		<u> </u>
242029 10/09 617 242020 10/09 618	•	٠	٠	•								 	 		
242030 10/09 618 242021 12/08 701	٠	٠	٠	٠								 	 		<u> </u>
242031 13/08 701	٠	٠	٠	٠		 						 	 		
242032 13/08 702	٠	٠	٠	٠											

Thank you for choosing Labmark to analyse your project samples.

Additional information on www.labmark.com.au

Report Date : 16/12/2009 Report Time: 3:51:22PM

Sample Receipt

Report Date : 16/12/2009 Report Time: 3:51:22PM

Sample

Receipt

Quality, Service, Support

The table below represents LabMark's understanding and interpretation of the customer supplied sample COC request (refer to SRN comments section on first page for external subcontracting method details). Please confirm that your COC request has been entered correctly. Due to THT and TAT requirements, testing shall commence immediately as per this table, unless the customer intervenes with a correction prior to testing.

	G	RID R	EVIEW TABLE							Re	ques	ted A	nalys	sis				
				TCLP metals	P Not Reported	P Not Reported	TCLP Preparation											
	Date	Depth	Client Sample ID	TCL	PREP	PREP	TCL											
242033			703	٠	٠	٠	٠											
242034			704	•	٠	٠	٠											
242035			705	•	٠	٠	٠											
242036			706	•	٠	٠	٠											
242037			707	•	٠	٠	٠											
242038	19/08		708	٠	٠	٠	٠											
242039	19/08		709	٠	٠	٠	٠											
242040			710	٠	٠	٠	٠											
242041			711	٠	٠	٠	٠											
242042			712	٠	٠	٠	٠											
242043	10/09		713	•	٠	٠	٠											
242044	10/09		714	٠	٠	٠	٠											
242045	10/09		715	٠	٠	٠	٠											
242046	21/08		901	٠	٠	٠	٠											
242047	21/08		902	٠	٠	٠	٠											
242048	21/08		903	٠	٠	٠	٠											
242049	21/08		904	٠	٠	٠	٠		Ì									
242050	21/08		905	٠	٠	٠	٠		Ĭ									
242051	21/08		906	٠	٠	٠	٠	1	Ī									
			Totals:	51	51	51	51		1									

'PREP Not Reported' refers to an internal laboratory instruction - client confirmation of this parameter is not required.

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au

Quality, Service, Support

Sample

Receipt

Notice (SRN) for E046157

		1							Re	ques	ted A	naly	sis						
					_														
		Е			Molybdenum														
		Chromium	Jer	-	/bde	e													
		Chro	Copper	Lead	Moly	Nickel	Zinc												
		LP.	LP LP	Ъ	Ъ	LP L	LP LP												
		MET-TCLP_W	MET-TCLP_W	MET-TCLP_W	MET-TCLP_W	MET-TCLP_W	MET-TCLP_W												
No. Date Depth	Client Sample ID	MΕ		MΕ	-	Β Σ													
241998 03/09	401	٠	٠		٠		٠												
242002 03/09	402	٠	٠		٠		٠												
242003 03/09	403	٠	٠		٠		٠												
242004 02/09	404	٠	٠		٠		٠												
242005 02/09	405	٠	٠		٠		٠												
242006 02/09	406	٠	٠		٠		٠												
242007 03/09	501	٠	٠			٠	٠												
242008 03/09	502	٠	٠			٠	٠												
242009 03/09	503	٠	٠			٠	٠												
242010 02/09	504	٠	٠			٠	٠												
242011 02/09	505	٠	٠			٠	٠												
242012 02/09	506	٠	٠			٠	٠												
242013 03/09	801	٠	٠	٠		٠	٠												
242014 03/09	802	٠	٠	٠		٠	٠												
242015 03/09	803	•	٠	٠	_	٠	٠												
242016 13/08	601	•	٠		٠	•	٠												
242017 13/08	602	•	•		٠	٠	٠												
242018 13/08	603	•	•	<u> </u>	•	٠	٠	<u> </u>						L	L	L	⊢		
242019 18/08	604	•	•	<u> </u>	•	•	•	<u> </u>									┢──┨		\mid
242020 18/08	605	•	•	-	•	•	•	<u> </u>									┢──┤		
242021 18/08	606	•	•	-	•	•	•	<u> </u>									┢──┤		
242022 19/08	607	•	•	<u> </u>	•	•	•	<u> </u>									┢──┨		
242023 19/08	608 609	•	•	<u> </u>	•	•	•	<u> </u>									┢──┨		
242024 19/08 242025 04/08		•	•	┣	•	•	•	<u> </u>									┢──┨		⊢
	613 614	•	•	┣	•	•	•	<u> </u>									┢──┨		⊢
242026 04/08	615	•	•	<u> </u>	•	•	•	<u> </u>						<u> </u>		<u> </u>	┢──┧		⊢┤
242027 04/08 242028 10/09	615	•	•	<u> </u>	•	•	•	<u> </u>						<u> </u>	<u> </u>	<u> </u>	┢──┨		⊢┤
242028 10/09	617	•	•	┢	÷	•	•	-									┢──┨	-	
242029 10/09	618	_	•	<u> </u>	•	•	•										┢──┨	-	
	701	•	•	<u> </u>	•	•	•										┢──┨	-	
242031 13/08 242032 13/08	701 702	÷	÷	┣─	•	•	•										┢──┨		
242032 13/08 242033 13/08	702	•	÷	┣─	•	•	•										┢──┨		
242033 13/00	105	-	-	I	•	•		I						<u> </u>	<u> </u>		⊢		لللل

Thank you for choosing Labmark to analyse your project samples.

Quality, Service, Support

Sample

Receipt

Notice (SRN) for E046157

									Re	ques	ted A	nalys	sis				
		MET-TCLP_W Chromium	MET-TCLP_W Copper	MET-TCLP_W Lead	MET-TCLP_W Molybdenum	MET-TCLP_W Nickel	MET-TCLP_W Zinc										
No. Date Depth	Client Sample ID	ЧЕТ-	MET-	ЧЕТ-	MET-	MET-	MET-										
242034 13/08	704	٠	٠	-	٠	٠	٠										
242035 18/09	705	٠	٠		٠	٠	٠										
242036 18/09	706	٠	٠		٠	٠	٠										
242037 19/08	707	٠	٠		٠	٠	٠										
242038 19/08	708	٠	٠		٠	٠	٠										
242039 19/08	709	٠	٠		٠	٠	٠										
242040 04/08	710	٠	٠		٠	٠	٠										
242041 04/08	711	٠	٠		٠	٠	٠										
242042 04/08	712	٠	٠		٠	٠	٠										
242043 10/09	713	٠	٠		٠	٠	٠										
242044 10/09	714	٠	٠		٠	٠	٠										
242045 10/09	715	٠	٠		٠	٠	٠										
242046 21/08	901		٠				٠										
242047 21/08	902		٠				٠										
242048 21/08	903		٠				٠										
242049 21/08	904	٠	٠		٠	٠	٠										
242050 21/08	905	٠	٠		٠	٠	٠										
242051 21/08	906	٠	٠		٠	٠	٠										
	Totals:	48	51	3	39	42	51										

Thank you for choosing Labmark to analyse your project samples. Additional information on www.labmark.com.au